These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19660474)

  • 1. A model for insect locomotion in the horizontal plane: feedforward activation of fast muscles, stability, and robustness.
    Kukillaya RP; Holmes P
    J Theor Biol; 2009 Nov; 261(2):210-26. PubMed ID: 19660474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions.
    Seipel JE; Holmes PJ; Full RJ
    Biol Cybern; 2004 Aug; 91(2):76-90. PubMed ID: 15322851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hexapedal jointed-leg model for insect locomotion in the horizontal plane.
    Kukillaya RP; Holmes PJ
    Biol Cybern; 2007 Dec; 97(5-6):379-95. PubMed ID: 17926063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromechanical models for insect locomotion: Stability, maneuverability, and proprioceptive feedback.
    Kukillaya R; Proctor J; Holmes P
    Chaos; 2009 Jun; 19(2):026107. PubMed ID: 19566267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reflexes and preflexes: on the role of sensory feedback on rhythmic patterns in insect locomotion.
    Proctor J; Holmes P
    Biol Cybern; 2010 Jun; 102(6):513-31. PubMed ID: 20358220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics and stability of legged locomotion in the horizontal plane: a test case using insects.
    Schmitt J; Garcia M; Razo RC; Holmes P; Full RJ
    Biol Cybern; 2002 May; 86(5):343-53. PubMed ID: 11984649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical models for insect locomotion: active muscles and energy losses.
    Schmitt J; Holmes P
    Biol Cybern; 2003 Jul; 89(1):43-55. PubMed ID: 12836032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leg recirculation in horizontal plane locomotion.
    Wickramasuriya A; Schmitt J
    Biol Cybern; 2009 Oct; 101(4):247-63. PubMed ID: 19787371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics and stability of lateral plane locomotion on inclines.
    Schmitt J; Bonnono S
    J Theor Biol; 2009 Dec; 261(4):598-609. PubMed ID: 19703469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the muscle force distribution in ballistic motion based on a multibody methodology.
    Czaplicki A; Silva M; Ambrósio J; Jesus O; Abrantes J
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):45-54. PubMed ID: 16880156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain.
    Sponberg S; Full RJ
    J Exp Biol; 2008 Feb; 211(Pt 3):433-46. PubMed ID: 18203999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phase-reduced neuro-mechanical model for insect locomotion: feed-forward stability and proprioceptive feedback.
    Proctor J; Kukillaya RP; Holmes P
    Philos Trans A Math Phys Eng Sci; 2010 Nov; 368(1930):5087-104. PubMed ID: 20921014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving horizontal plane locomotion via leg angle control.
    Wickramasuriya A; Schmitt J
    J Theor Biol; 2009 Feb; 256(3):414-27. PubMed ID: 18951907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor patterns in human walking and running.
    Cappellini G; Ivanenko YP; Poppele RE; Lacquaniti F
    J Neurophysiol; 2006 Jun; 95(6):3426-37. PubMed ID: 16554517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization-based prediction of asymmetric human gait.
    Xiang Y; Arora JS; Abdel-Malek K
    J Biomech; 2011 Feb; 44(4):683-93. PubMed ID: 21092968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bipedal walking and running with spring-like biarticular muscles.
    Iida F; Rummel J; Seyfarth A
    J Biomech; 2008; 41(3):656-67. PubMed ID: 17996242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: II. Fast running.
    Watson JT; Ritzmann RE
    J Comp Physiol A; 1998 Jan; 182(1):23-33. PubMed ID: 9447711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ muscle power differs without varying in vitro mechanical properties in two insect leg muscles innervated by the same motor neuron.
    Ahn AN; Meijer K; Full RJ
    J Exp Biol; 2006 Sep; 209(Pt 17):3370-82. PubMed ID: 16916973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR; Sasaki K
    J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of feedback on stability and maneuverability of a phase-reduced model for cockroach locomotion.
    Proctor JL; Holmes P
    Biol Cybern; 2018 Aug; 112(4):387-401. PubMed ID: 29948143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.