BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 19660538)

  • 1. Macrophages influence Salmonella host-specificity in vivo.
    Xu T; Maloy S; McGuire KL
    Microb Pathog; 2009 Oct; 47(4):212-22. PubMed ID: 19660538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of Salmonella enterica serovar Typhi RpoS in resistance to NO-mediated host defense against serovar Typhi infection.
    Alam MS; Zaki MH; Yoshitake J; Akuta T; Ezaki T; Akaike T
    Microb Pathog; 2006 Mar; 40(3):116-25. PubMed ID: 16448800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A possible mechanism for host-specific pathogenesis of Salmonella serovars.
    Ishibashi Y; Arai T
    Microb Pathog; 1996 Dec; 21(6):435-46. PubMed ID: 8971684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The related effector proteins SopD and SopD2 from Salmonella enterica serovar Typhimurium contribute to virulence during systemic infection of mice.
    Jiang X; Rossanese OW; Brown NF; Kujat-Choy S; Galán JE; Finlay BB; Brumell JH
    Mol Microbiol; 2004 Dec; 54(5):1186-98. PubMed ID: 15554961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual role for macrophages in vivo in pathogenesis and control of murine Salmonella enterica var. Typhimurium infections.
    Wijburg OL; Simmons CP; van Rooijen N; Strugnell RA
    Eur J Immunol; 2000 Mar; 30(3):944-53. PubMed ID: 10741413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immune reaction and survivability of salmonella typhimurium and salmonella infantis after infection of primary avian macrophages.
    Braukmann M; Methner U; Berndt A
    PLoS One; 2015; 10(3):e0122540. PubMed ID: 25811871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gamma interferon-independent effects of interleukin-12 on immunity to Salmonella enterica serovar Typhimurium.
    Price JD; Simpfendorfer KR; Mantena RR; Holden J; Heath WR; van Rooijen N; Strugnell RA; Wijburg OL
    Infect Immun; 2007 Dec; 75(12):5753-62. PubMed ID: 17875635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Salmonella Typhi hlyE gene plays a role in invasion of cultured epithelial cells and its functional transfer to S. Typhimurium promotes deep organ infection in mice.
    Fuentes JA; Villagra N; Castillo-Ruiz M; Mora GC
    Res Microbiol; 2008 May; 159(4):279-87. PubMed ID: 18434098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse chromosome 1 Ity locus regulates microbicidal activity of isolated peritoneal macrophages against a diverse group of intracellular and extracellular bacteria.
    Lissner CR; Weinstein DL; O'Brien AD
    J Immunol; 1985 Jul; 135(1):544-7. PubMed ID: 3923111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated neutrophil, macrophage and dendritic cell numbers characterize immune cell populations in mice chronically infected with Salmonella.
    Johansson C; Ingman M; Jo Wick M
    Microb Pathog; 2006; 41(2-3):49-58. PubMed ID: 16782300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of host resistance to Salmonella typhi and Salmonella typhimurium: bacterial survival within macrophages of murine and human origin.
    Vladoianu IR; Chang HR; Pechère JC
    Microb Pathog; 1990 Feb; 8(2):83-90. PubMed ID: 2190062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential bacterial survival, replication, and apoptosis-inducing ability of Salmonella serovars within human and murine macrophages.
    Schwan WR; Huang XZ; Hu L; Kopecko DJ
    Infect Immun; 2000 Mar; 68(3):1005-13. PubMed ID: 10678900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macrophage apoptosis associated with Salmonella enterica serovar Typhi plasmid.
    Wu S; Li Y; Xu Y; Song G; Qin Z; Huang R
    Indian J Exp Biol; 2010 Aug; 48(8):773-7. PubMed ID: 21341534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mucin allows survival of Salmonella typhi within mouse peritoneal macrophages.
    Sein J; Cachicas V; Becker MI; De Ioannes AE
    Biol Res; 1993; 26(3):371-9. PubMed ID: 7606257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in initial rate of intracellular killing of Salmonella typhimurium by resident peritoneal macrophages from various mouse strains.
    van Dissel JT; Leijh PC; van Furth R
    J Immunol; 1985 May; 134(5):3404-10. PubMed ID: 3920318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salmonella-typhimurium-specific difference in rate of intracellular killing by resident peritoneal macrophages from salmonella-resistant CBA and salmonella-susceptible C57BL/10 mice.
    van Dissel JT; Stikkelbroeck JJ; Michel BC; Leijh PC; van Furth R
    J Immunol; 1987 Jun; 138(12):4428-34. PubMed ID: 3295047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a transcriptional regulator that controls intracellular gene expression in Salmonella Typhi.
    Haghjoo E; Galán JE
    Mol Microbiol; 2007 Jun; 64(6):1549-61. PubMed ID: 17555437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi.
    Sabbagh SC; Forest CG; Lepage C; Leclerc JM; Daigle F
    FEMS Microbiol Lett; 2010 Apr; 305(1):1-13. PubMed ID: 20146749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryptdin-2: a novel therapeutic agent for experimental Salmonella Typhimurium infection.
    Preet S; Verma I; Rishi P
    J Antimicrob Chemother; 2010 May; 65(5):991-4. PubMed ID: 20228082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential early interactions between Salmonella enterica serovar Typhi and two other pathogenic Salmonella serovars with intestinal epithelial cells.
    Weinstein DL; O'Neill BL; Hone DM; Metcalf ES
    Infect Immun; 1998 May; 66(5):2310-8. PubMed ID: 9573122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.