BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 19660647)

  • 1. The rostral migratory stream and olfactory system: smell, disease and slippery cells.
    Curtis MA; Monzo HJ; Faull RL
    Prog Brain Res; 2009; 175():33-42. PubMed ID: 19660647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of drebrin E in migrating neuroblasts in adult rat brain: coincidence between drebrin E disappearance from cell body and cessation of migration.
    Song M; Kojima N; Hanamura K; Sekino Y; Inoue HK; Mikuni M; Shirao T
    Neuroscience; 2008 Mar; 152(3):670-82. PubMed ID: 18304746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice.
    De Marchis S; Fasolo A; Puche AC
    J Comp Neurol; 2004 Aug; 476(3):290-300. PubMed ID: 15269971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of the dopaminergic phenotype in the olfactory system of neonatal and adult mice.
    Saino-Saito S; Sasaki H; Volpe BT; Kobayashi K; Berlin R; Baker H
    J Comp Neurol; 2004 Nov; 479(4):389-98. PubMed ID: 15514978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell cycle length of olfactory bulb neuronal progenitors in the rostral migratory stream.
    Smith CM; Luskin MB
    Dev Dyn; 1998 Oct; 213(2):220-7. PubMed ID: 9786422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in cell migration and survival in the olfactory bulb of the pcd/pcd mouse.
    Valero J; Weruaga E; Murias AR; Recio JS; Curto GG; Gómez C; Alonso JR
    Dev Neurobiol; 2007 Jun; 67(7):839-59. PubMed ID: 17506498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain.
    Saghatelyan A; de Chevigny A; Schachner M; Lledo PM
    Nat Neurosci; 2004 Apr; 7(4):347-56. PubMed ID: 15034584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rostral migratory stream is a neurogenic niche that predominantly engenders periglomerular cells: in vivo evidence in the adult rat brain.
    Mendoza-Torreblanca JG; Martínez-Martínez E; Tapia-Rodríguez M; Ramírez-Hernández R; Gutiérrez-Ospina G
    Neurosci Res; 2008 Mar; 60(3):289-99. PubMed ID: 18243385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subventricular zone-derived neuroblast migration to the olfactory bulb is modulated by matrix remodelling.
    Bovetti S; Bovolin P; Perroteau I; Puche AC
    Eur J Neurosci; 2007 Apr; 25(7):2021-33. PubMed ID: 17439490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Neurogenesis in the adult brain. Functional consequences].
    Gheusi G; Rochefort C
    J Soc Biol; 2002; 196(1):67-76. PubMed ID: 12134636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABAergic phenotypic differentiation of a subpopulation of subventricular derived migrating progenitors.
    De Marchis S; Temoney S; Erdelyi F; Bovetti S; Bovolin P; Szabo G; Puche AC
    Eur J Neurosci; 2004 Sep; 20(5):1307-17. PubMed ID: 15341602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transplantation of mammalian olfactory progenitors into chick hosts reveals migration and differentiation potentials dependent on cell commitment.
    Durbec P; Rougon G
    Mol Cell Neurosci; 2001 Mar; 17(3):561-76. PubMed ID: 11273650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IGF-I promotes neuronal migration and positioning in the olfactory bulb and the exit of neuroblasts from the subventricular zone.
    Hurtado-Chong A; Yusta-Boyo MJ; Vergaño-Vera E; Bulfone A; de Pablo F; Vicario-Abejón C
    Eur J Neurosci; 2009 Sep; 30(5):742-55. PubMed ID: 19712103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embryonic (PSA) N-CAM reveals chains of migrating neuroblasts between the lateral ventricle and the olfactory bulb of adult mice.
    Rousselot P; Lois C; Alvarez-Buylla A
    J Comp Neurol; 1995 Jan; 351(1):51-61. PubMed ID: 7896939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo.
    Suhonen JO; Peterson DA; Ray J; Gage FH
    Nature; 1996 Oct; 383(6601):624-7. PubMed ID: 8857538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The age of olfactory bulb neurons in humans.
    Bergmann O; Liebl J; Bernard S; Alkass K; Yeung MS; Steier P; Kutschera W; Johnson L; Landén M; Druid H; Spalding KL; Frisén J
    Neuron; 2012 May; 74(4):634-9. PubMed ID: 22632721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ER81 and CaMKIV identify anatomically and phenotypically defined subsets of mouse olfactory bulb interneurons.
    Saino-Saito S; Cave JW; Akiba Y; Sasaki H; Goto K; Kobayashi K; Berlin R; Baker H
    J Comp Neurol; 2007 Jun; 502(4):485-96. PubMed ID: 17394138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic features of postnatal subventricular zone cell motility: a two-photon time-lapse study.
    Nam SC; Kim Y; Dryanovski D; Walker A; Goings G; Woolfrey K; Kang SS; Chu C; Chenn A; Erdelyi F; Szabo G; Hockberger P; Szele FG
    J Comp Neurol; 2007 Nov; 505(2):190-208. PubMed ID: 17853439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activator of G protein signaling type 3 mRNA is widely distributed in the rat brain and is particularly abundant in the subventricular zone-olfactory bulb system of neural precursor cell proliferation, migration and differentiation.
    Taymans JM; Kia HK; Langlois X
    Neurosci Lett; 2006 Jan; 391(3):116-21. PubMed ID: 16154268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A brain slice culture model for studies of endogenous and exogenous precursor cell migration in the rostral migratory stream.
    Tanvig M; Blaabjerg M; Andersen RK; Villa A; Rosager AM; Poulsen FR; Martinez-Serrano A; Zimmer J; Meyer M
    Brain Res; 2009 Oct; 1295():1-12. PubMed ID: 19646977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.