These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 19660759)
1. Computational biomechanics of articular cartilage of human knee joint: effect of osteochondral defects. Shirazi R; Shirazi-Adl A J Biomech; 2009 Nov; 42(15):2458-65. PubMed ID: 19660759 [TBL] [Abstract][Full Text] [Related]
2. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. Shirazi R; Shirazi-Adl A; Hurtig M J Biomech; 2008 Dec; 41(16):3340-8. PubMed ID: 19022449 [TBL] [Abstract][Full Text] [Related]
3. Predicting the effects of knee focal articular surface injury with a patient-specific finite element model. Papaioannou G; Demetropoulos CK; King YH Knee; 2010 Jan; 17(1):61-8. PubMed ID: 19477131 [TBL] [Abstract][Full Text] [Related]
4. Computer simulation of damage on distal femoral articular cartilage after meniscectomies. Peña E; Calvo B; Martínez MA; Doblaré M Comput Biol Med; 2008 Jan; 38(1):69-81. PubMed ID: 17868667 [TBL] [Abstract][Full Text] [Related]
5. The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Wilson W; van Donkelaar CC; van Rietbergen R; Huiskes R Med Eng Phys; 2005 Dec; 27(10):810-26. PubMed ID: 16287601 [TBL] [Abstract][Full Text] [Related]
6. Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics-a 3D finite element analysis. Mononen ME; Mikkola MT; Julkunen P; Ojala R; Nieminen MT; Jurvelin JS; Korhonen RK J Biomech; 2012 Feb; 45(3):579-87. PubMed ID: 22137088 [TBL] [Abstract][Full Text] [Related]
7. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model. Cao L; Youn I; Guilak F; Setton LA J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764 [TBL] [Abstract][Full Text] [Related]
8. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking. Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695 [TBL] [Abstract][Full Text] [Related]
9. Finite element study of a tissue-engineered cartilage transplant in human tibiofemoral joint. Vahdati A; Wagner DR Comput Methods Biomech Biomed Engin; 2012; 15(11):1211-21. PubMed ID: 21809943 [TBL] [Abstract][Full Text] [Related]
10. Trabecular bone strain changes associated with cartilage defects in the proximal and distal tibia. McKinley TO; Bay BK J Orthop Res; 2001 Sep; 19(5):906-13. PubMed ID: 11562140 [TBL] [Abstract][Full Text] [Related]
11. Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage--a 3D finite element study of stresses and strains in human knee joint. Halonen KS; Mononen ME; Jurvelin JS; Töyräs J; Korhonen RK J Biomech; 2013 Apr; 46(6):1184-92. PubMed ID: 23384762 [TBL] [Abstract][Full Text] [Related]
12. Osteochondral defects in the human knee: influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage. Guettler JH; Demetropoulos CK; Yang KH; Jurist KA Am J Sports Med; 2004 Sep; 32(6):1451-8. PubMed ID: 15310570 [TBL] [Abstract][Full Text] [Related]
13. Influence of an interpositional spacer on the behaviour of the tibiofemoral joint: a finite element study. Checa S; Taylor M; New A Clin Biomech (Bristol); 2008 Oct; 23(8):1044-52. PubMed ID: 18499317 [TBL] [Abstract][Full Text] [Related]
14. The influence of mechanical properties of subchondral plate, femoral head and neck on dynamic stress distribution of the articular cartilage. Wei HW; Sun SS; Jao SH; Yeh CR; Cheng CK Med Eng Phys; 2005 May; 27(4):295-304. PubMed ID: 15823470 [TBL] [Abstract][Full Text] [Related]
15. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes. Korhonen RK; Julkunen P; Wilson W; Herzog W J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490 [TBL] [Abstract][Full Text] [Related]
16. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. Akizuki S; Mow VC; Müller F; Pita JC; Howell DS; Manicourt DH J Orthop Res; 1986; 4(4):379-92. PubMed ID: 3783297 [TBL] [Abstract][Full Text] [Related]
17. Tensile properties of human knee joint cartilage. II. Correlations between weight bearing and tissue pathology and the kinetics of swelling. Akizuki S; Mow VC; Muller F; Pita JC; Howell DS J Orthop Res; 1987; 5(2):173-86. PubMed ID: 3572588 [TBL] [Abstract][Full Text] [Related]
18. Chondrocyte damage and contact pressures following impact on the rabbit tibiofemoral joint. Isaac DI; Meyer EG; Haut RC J Biomech Eng; 2008 Aug; 130(4):041018. PubMed ID: 18601460 [TBL] [Abstract][Full Text] [Related]
19. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study. Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202 [TBL] [Abstract][Full Text] [Related]
20. Biomechanics of the knee joint in flexion under various quadriceps forces. Mesfar W; Shirazi-Adl A Knee; 2005 Dec; 12(6):424-34. PubMed ID: 15939592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]