BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 19660764)

  • 1. Polyelectrolyte mediated formation of hydroxyapatite microspheres of controlled size and hierarchical structure.
    Wang Y; Hassan MS; Gunawan P; Lau R; Wang X; Xu R
    J Colloid Interface Sci; 2009 Nov; 339(1):69-77. PubMed ID: 19660764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical hollow hydroxyapatite microspheres: microwave-assisted rapid synthesis by using pyridoxal-5'-phosphate as a phosphorus source and application in drug delivery.
    Zhao XY; Zhu YJ; Qi C; Chen F; Lu BQ; Zhao J; Wu J
    Chem Asian J; 2013 Jun; 8(6):1313-20. PubMed ID: 23554329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyapatite nanospheres.
    Wang Y; Moo YX; Chen C; Gunawan P; Xu R
    J Colloid Interface Sci; 2010 Dec; 352(2):393-400. PubMed ID: 20846664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of nanohydroxyapatite microspheres for medical applications.
    Mateus AY; Barrias CC; Ribeiro C; Ferraz MP; Monteiro FJ
    J Biomed Mater Res A; 2008 Aug; 86(2):483-93. PubMed ID: 17975824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of PSS on morphology and optical properties of ZnO.
    Yu J; Li C; Liu S
    J Colloid Interface Sci; 2008 Oct; 326(2):433-8. PubMed ID: 18703204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of poly(styrene/alpha-tert-butoxy-omega-vinylbenzyl-polyglycidol) microspheres suspended in water. Effect of sodium chloride and temperature on particle diameters and electrophoretic mobility.
    Basinska T; Slomkowski S; Kazmierski S; Chehimi MM
    Langmuir; 2008 Aug; 24(16):8465-72. PubMed ID: 18630979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sol-gel processing of anti-inflammatory entrapment in silica, release kinetics, and bioactivity.
    Catauro M; Melisi D; Curcio A; Rimoli MG
    J Biomed Mater Res A; 2008 Dec; 87(4):843-9. PubMed ID: 18200553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyapatite particles as drug carriers for proteins.
    Tomoda K; Ariizumi H; Nakaji T; Makino K
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):226-35. PubMed ID: 19939646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled release of amoxicillin from hydroxyapatite-coated poly(lactic-co-glycolic acid) microspheres.
    Xu Q; Czernuszka JT
    J Control Release; 2008 Apr; 127(2):146-53. PubMed ID: 18325617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of aggregation-resistant biocompatible superparamagnetic noncovalent hybrid multilayer hollow microspheres for controlled drug release.
    Zhao X; Du P; Liu P
    Mol Pharm; 2012 Nov; 9(11):3330-9. PubMed ID: 22931055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method.
    Hamishehkar H; Emami J; Najafabadi AR; Gilani K; Minaiyan M; Mahdavi H; Nokhodchi A
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):340-9. PubMed ID: 19717287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system.
    Lai W; Chen C; Ren X; Lee IS; Jiang G; Kong X
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():166-72. PubMed ID: 26952411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled hydrothermal synthesis and structural characterization of a nickel selenide series.
    Zhuang Z; Peng Q; Zhuang J; Wang X; Li Y
    Chemistry; 2005 Dec; 12(1):211-7. PubMed ID: 16259035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite.
    Ren F; Leng Y; Xin R; Ge X
    Acta Biomater; 2010 Jul; 6(7):2787-96. PubMed ID: 20036765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-layer engineering of biocompatible, decomposable core-shell structures.
    Shenoy DB; Antipov AA; Sukhorukov GB; Möhwald H
    Biomacromolecules; 2003; 4(2):265-72. PubMed ID: 12625721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hollow carbonated hydroxyapatite microspheres with mesoporous structure: hydrothermal fabrication and drug delivery property.
    Guo YJ; Wang YY; Chen T; Wei YT; Chu LF; Guo YP
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3166-72. PubMed ID: 23706197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of nano-hydroxyapatite in gelatin droplets and the resulting porous composite microspheres.
    Teng S; Chen L; Guo Y; Shi J
    J Inorg Biochem; 2007 Apr; 101(4):686-91. PubMed ID: 17316810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis of hydroxyapatite nanoparticles, nanowires and hollow nano-structured microspheres using similar structured hard-precursors.
    Lin K; Liu X; Chang J; Zhu Y
    Nanoscale; 2011 Aug; 3(8):3052-5. PubMed ID: 21698324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ synthesis of hydroxyapatite coating by laser cladding.
    Wang DG; Chen CZ; Ma J; Zhang G
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):155-62. PubMed ID: 18657403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal synthesis of mesoporous InVO4 hierarchical microspheres and their photoluminescence properties.
    Li Y; Cao M; Feng L
    Langmuir; 2009 Feb; 25(3):1705-12. PubMed ID: 19138074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.