BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19660889)

  • 1. Characterization of azacytidine/poly(L-lactic) acid particles prepared by supercritical antisolvent precipitation.
    Argemí A; Vega A; Subra-Paternault P; Saurina J
    J Pharm Biomed Anal; 2009 Dec; 50(5):847-52. PubMed ID: 19660889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-micrometer-sized biodegradable particles of poly(L-lactic acid) via the gas antisolvent spray precipitation process.
    Randolph TW; Randolph AD; Mebes M; Yeung S
    Biotechnol Prog; 1993; 9(4):429-35. PubMed ID: 7763910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent.
    Young TJ; Johnston KP; Mishima K; Tanaka H
    J Pharm Sci; 1999 Jun; 88(6):640-50. PubMed ID: 10350502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of ethyl cellulose/methyl cellulose blends by supercritical antisolvent precipitation.
    Duarte AR; Gordillo MD; Cardoso MM; Simplício AL; Duarte CM
    Int J Pharm; 2006 Mar; 311(1-2):50-4. PubMed ID: 16423476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticization and spraying of poly (DL-lactic acid) using supercritical carbon dioxide: control of particle size.
    Hao J; Whitaker MJ; Wong B; Serhatkulu G; Shakesheff KM; Howdle SM
    J Pharm Sci; 2004 Apr; 93(4):1083-90. PubMed ID: 14999744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique.
    Kang Y; Wu J; Yin G; Huang Z; Yao Y; Liao X; Chen A; Pu X; Liao L
    Eur J Pharm Biopharm; 2008 Sep; 70(1):85-97. PubMed ID: 18495445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release.
    Thote AJ; Gupta RB
    Nanomedicine; 2005 Mar; 1(1):85-90. PubMed ID: 17292062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions.
    Tom JW; Debenedetti PG
    Biotechnol Prog; 1991; 7(5):403-11. PubMed ID: 1369363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleation and growth rates of poly(L-lactic acid) microparticles during precipitation with a compressed-fluid antisolvent.
    Jarmer DJ; Lengsfeld CS; Randolph TW
    Langmuir; 2004 Aug; 20(17):7254-64. PubMed ID: 15301513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology.
    Martin TM; Bandi N; Shulz R; Roberts CB; Kompella UB
    AAPS PharmSciTech; 2002; 3(3):E18. PubMed ID: 12916933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supercritical antisolvent production of biodegradable micro- and nanoparticles for controlled delivery of paclitaxel.
    Lee LY; Wang CH; Smith KA
    J Control Release; 2008 Jan; 125(2):96-106. PubMed ID: 18054107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical antisolvent precipitation of PHBV microparticles.
    Costa MS; Duarte AR; Cardoso MM; Duarte CM
    Int J Pharm; 2007 Jan; 328(1):72-7. PubMed ID: 16971075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and biological evaluation of paclitaxel-loaded poly(L-lactic acid) microparticles prepared by supercritical CO2.
    Kang Y; Wu J; Yin G; Huang Z; Liao X; Yao Y; Ouyang P; Wang H; Yang Q
    Langmuir; 2008 Jul; 24(14):7432-41. PubMed ID: 18547089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of supercritical antisolvent method in drug encapsulation: a review.
    Kalani M; Yunus R
    Int J Nanomedicine; 2011; 6():1429-42. PubMed ID: 21796245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PLGA microdevices for retinoids sustained release produced by supercritical emulsion extraction: continuous versus batch operation layouts.
    Porta GD; Campardelli R; Falco N; Reverchon E
    J Pharm Sci; 2011 Oct; 100(10):4357-67. PubMed ID: 21638283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.
    Li Y; Yang DJ; Chen SL; Chen SB; Chan AS
    Int J Pharm; 2008 Jul; 359(1-2):35-45. PubMed ID: 18440736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of polymeric particles in CO(2) medium using non-toxic solvents: formulation and comparisons with a phase separation method.
    Tran MK; Swed A; Boury F
    Eur J Pharm Biopharm; 2012 Nov; 82(3):498-507. PubMed ID: 22959993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of PLA/PCL particles as vehicles for oral delivery of the androgen hormone 17α-methyltestosterone.
    Sacchetin PS; Setti RF; Vieira e Rosa Pde T; Moraes ÂM
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():870-81. PubMed ID: 26478382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theophylline formulation by supercritical antisolvents.
    Roy C; Vega-González A; Subra-Paternault P
    Int J Pharm; 2007 Oct; 343(1-2):79-89. PubMed ID: 17582714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.