BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19660889)

  • 21. The parameters influencing the morphology of poly(ɛ-caprolactone) microspheres and the resulting release of encapsulated drugs.
    Bile J; Bolzinger MA; Vigne C; Boyron O; Valour JP; Fessi H; Chevalier Y
    Int J Pharm; 2015 Oct; 494(1):152-66. PubMed ID: 26235922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.
    Esfandiari N; Ghoreishi SM
    AAPS PharmSciTech; 2015 Dec; 16(6):1263-9. PubMed ID: 25771736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micronization of insulin from halogenated alcohol solution using supercritical carbon dioxide as an antisolvent.
    Snavely WK; Subramaniam B; Rajewski RA; Defelippis MR
    J Pharm Sci; 2002 Sep; 91(9):2026-39. PubMed ID: 12210049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of physicochemical factors on the release kinetics of hydrophilic drugs from poly(L-lactic acid) (L-PLA) pellets.
    Kader A; Jalil R
    Drug Dev Ind Pharm; 1998 Jun; 24(6):535-9. PubMed ID: 9876619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying.
    Whitaker MJ; Hao J; Davies OR; Serhatkulu G; Stolnik-Trenkic S; Howdle SM; Shakesheff KM
    J Control Release; 2005 Jan; 101(1-3):85-92. PubMed ID: 15588896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of flower- or cake-shaped stereocomplex particles from the stereo multiblock copoly(rac-lactide)s.
    Hu J; Tang Z; Qiu X; Pang X; Yang Y; Chen X; Jing X
    Biomacromolecules; 2005; 6(5):2843-50. PubMed ID: 16153126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stabilization and encapsulation of a staphylokinase variant (K35R) into poly(lactic-co-glycolic acid) microspheres.
    He JT; Su HB; Li GP; Tao XM; Mo W; Song HY
    Int J Pharm; 2006 Feb; 309(1-2):101-8. PubMed ID: 16413979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Encapsulation and sustained release of a model drug, indomethacin, using CO(2)-based microencapsulation.
    Liu H; Finn N; Yates MZ
    Langmuir; 2005 Jan; 21(1):379-85. PubMed ID: 15620328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process.
    Salmaso S; Elvassore N; Bertucco A; Caliceti P
    J Pharm Sci; 2009 Feb; 98(2):640-50. PubMed ID: 18484622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering.
    Davies OR; Lewis AL; Whitaker MJ; Tai H; Shakesheff KM; Howdle SM
    Adv Drug Deliv Rev; 2008 Feb; 60(3):373-87. PubMed ID: 18069079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dexamethasone-loaded scaffolds prepared by supercritical-assisted phase inversion.
    Duarte AR; Mano JF; Reis RL
    Acta Biomater; 2009 Jul; 5(6):2054-62. PubMed ID: 19328753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drug encapsulation using supercritical fluid extraction of emulsions.
    Chattopadhyay P; Huff R; Shekunov BY
    J Pharm Sci; 2006 Mar; 95(3):667-79. PubMed ID: 16447174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase behavior of ketoprofen-poly(lactic acid) drug particles formed by rapid expansion of supercritical solutions.
    Imran ul-haq M; Chasovskikh E; Signorell R
    Langmuir; 2010 Sep; 26(18):14951-7. PubMed ID: 20795658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and physicochemical properties of vinblastine microparticles by supercritical antisolvent process.
    Zhang X; Zhao X; Zu Y; Chen X; Lu Q; Ma Y; Yang L
    Int J Mol Sci; 2012 Oct; 13(10):12598-607. PubMed ID: 23202916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zidovudine-poly(L-lactic acid) solid dispersions with improved intestinal permeability prepared by supercritical antisolvent process.
    Yoshida VM; Balcão VM; Vila MM; Oliveira Júnior JM; Aranha N; Chaud MV; Gremião MP
    J Pharm Sci; 2015 May; 104(5):1691-700. PubMed ID: 25676038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method.
    Hamishehkar H; Emami J; Najafabadi AR; Gilani K; Minaiyan M; Mahdavi H; Nokhodchi A
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):340-9. PubMed ID: 19717287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size controlled production of biodegradable microparticles with supercritical gases.
    Thies J; Müller BW
    Eur J Pharm Biopharm; 1998 Jan; 45(1):67-74. PubMed ID: 9689537
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multiplexed electrospray process for single-step synthesis of stabilized polymer particles for drug delivery.
    Almería B; Fahmy TM; Gomez A
    J Control Release; 2011 Sep; 154(2):203-10. PubMed ID: 21640147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Precipitation of lysozyme nanoparticles from dimethyl sulfoxide using carbon dioxide as antisolvent.
    Muhrer G; Mazzotti M
    Biotechnol Prog; 2003; 19(2):549-56. PubMed ID: 12675600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Preparation of interferon-alpha-loaded poly-L-lactic acid lamellar particles].
    Li X; Chen X; Liu J; Cao W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Dec; 19(4):559-62. PubMed ID: 12561346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.