These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19661283)

  • 1. Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data.
    Wang Y; Zhang XS; Xia Y
    Nucleic Acids Res; 2009 Oct; 37(18):5943-58. PubMed ID: 19661283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying cooperativity among transcription factors controlling the cell cycle in yeast.
    Banerjee N; Zhang MQ
    Nucleic Acids Res; 2003 Dec; 31(23):7024-31. PubMed ID: 14627835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian data fusion based approach for learning genome-wide transcriptional regulatory networks.
    Sauta E; Demartini A; Vitali F; Riva A; Bellazzi R
    BMC Bioinformatics; 2020 May; 21(1):219. PubMed ID: 32471360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological comparison of methods for predicting transcriptional cooperativity in yeast.
    Aguilar D; Oliva B
    BMC Genomics; 2008 Mar; 9():137. PubMed ID: 18366726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating multiple resources to identify specific transcriptional cooperativity with a Bayesian approach.
    Hu P; Shen Z; Tu H; Zhang L; Shi T
    Bioinformatics; 2014 Mar; 30(6):823-30. PubMed ID: 24192543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast.
    Wu WS; Lai FJ
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive performance evaluation on the prediction results of existing cooperative transcription factors identification algorithms.
    Lai FJ; Chang HT; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 4(Suppl 4):S9. PubMed ID: 25521604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional network inference from functional similarity and expression data: a global supervised approach.
    Ambroise J; Robert A; Macq B; Gala JL
    Stat Appl Genet Mol Biol; 2012 Jan; 11(1):Article 2. PubMed ID: 22499684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks.
    Zhu J; Zhang B; Smith EN; Drees B; Brem RB; Kruglyak L; Bumgarner RE; Schadt EE
    Nat Genet; 2008 Jul; 40(7):854-61. PubMed ID: 18552845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classifying transcription factor targets and discovering relevant biological features.
    Holloway DT; Kon M; DeLisi C
    Biol Direct; 2008 May; 3():22. PubMed ID: 18513408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian network driven approach to model the transcriptional response to nitric oxide in Saccharomyces cerevisiae.
    Zhu J; Jambhekar A; Sarver A; DeRisi J
    PLoS One; 2006 Dec; 1(1):e94. PubMed ID: 17183726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression.
    Boorsma A; Lu XJ; Zakrzewska A; Klis FM; Bussemaker HJ
    PLoS One; 2008 Sep; 3(9):e3112. PubMed ID: 18769540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of transcription factor cooperativity via stochastic system model.
    Chang YH; Wang YC; Chen BS
    Bioinformatics; 2006 Sep; 22(18):2276-82. PubMed ID: 16844711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A synthetic biology framework for programming eukaryotic transcription functions.
    Khalil AS; Lu TK; Bashor CJ; Ramirez CL; Pyenson NC; Joung JK; Collins JJ
    Cell; 2012 Aug; 150(3):647-58. PubMed ID: 22863014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture.
    Jothi R; Balaji S; Wuster A; Grochow JA; Gsponer J; Przytycka TM; Aravind L; Babu MM
    Mol Syst Biol; 2009; 5():294. PubMed ID: 19690563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De-novo learning of genome-scale regulatory networks in S. cerevisiae.
    Ma S; Kemmeren P; Gresham D; Statnikov A
    PLoS One; 2014; 9(9):e106479. PubMed ID: 25215507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting Cooperativity between Transcription Factors Based on Functional Coherence and Similarity of Their Target Gene Sets.
    Wu WS; Lai FJ
    PLoS One; 2016; 11(9):e0162931. PubMed ID: 27623007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.