BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19661283)

  • 1. Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data.
    Wang Y; Zhang XS; Xia Y
    Nucleic Acids Res; 2009 Oct; 37(18):5943-58. PubMed ID: 19661283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying cooperativity among transcription factors controlling the cell cycle in yeast.
    Banerjee N; Zhang MQ
    Nucleic Acids Res; 2003 Dec; 31(23):7024-31. PubMed ID: 14627835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian data fusion based approach for learning genome-wide transcriptional regulatory networks.
    Sauta E; Demartini A; Vitali F; Riva A; Bellazzi R
    BMC Bioinformatics; 2020 May; 21(1):219. PubMed ID: 32471360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological comparison of methods for predicting transcriptional cooperativity in yeast.
    Aguilar D; Oliva B
    BMC Genomics; 2008 Mar; 9():137. PubMed ID: 18366726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating multiple resources to identify specific transcriptional cooperativity with a Bayesian approach.
    Hu P; Shen Z; Tu H; Zhang L; Shi T
    Bioinformatics; 2014 Mar; 30(6):823-30. PubMed ID: 24192543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast.
    Wu WS; Lai FJ
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive performance evaluation on the prediction results of existing cooperative transcription factors identification algorithms.
    Lai FJ; Chang HT; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 4(Suppl 4):S9. PubMed ID: 25521604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional network inference from functional similarity and expression data: a global supervised approach.
    Ambroise J; Robert A; Macq B; Gala JL
    Stat Appl Genet Mol Biol; 2012 Jan; 11(1):Article 2. PubMed ID: 22499684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks.
    Zhu J; Zhang B; Smith EN; Drees B; Brem RB; Kruglyak L; Bumgarner RE; Schadt EE
    Nat Genet; 2008 Jul; 40(7):854-61. PubMed ID: 18552845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classifying transcription factor targets and discovering relevant biological features.
    Holloway DT; Kon M; DeLisi C
    Biol Direct; 2008 May; 3():22. PubMed ID: 18513408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian network driven approach to model the transcriptional response to nitric oxide in Saccharomyces cerevisiae.
    Zhu J; Jambhekar A; Sarver A; DeRisi J
    PLoS One; 2006 Dec; 1(1):e94. PubMed ID: 17183726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression.
    Boorsma A; Lu XJ; Zakrzewska A; Klis FM; Bussemaker HJ
    PLoS One; 2008 Sep; 3(9):e3112. PubMed ID: 18769540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of transcription factor cooperativity via stochastic system model.
    Chang YH; Wang YC; Chen BS
    Bioinformatics; 2006 Sep; 22(18):2276-82. PubMed ID: 16844711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A synthetic biology framework for programming eukaryotic transcription functions.
    Khalil AS; Lu TK; Bashor CJ; Ramirez CL; Pyenson NC; Joung JK; Collins JJ
    Cell; 2012 Aug; 150(3):647-58. PubMed ID: 22863014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture.
    Jothi R; Balaji S; Wuster A; Grochow JA; Gsponer J; Przytycka TM; Aravind L; Babu MM
    Mol Syst Biol; 2009; 5():294. PubMed ID: 19690563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De-novo learning of genome-scale regulatory networks in S. cerevisiae.
    Ma S; Kemmeren P; Gresham D; Statnikov A
    PLoS One; 2014; 9(9):e106479. PubMed ID: 25215507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting Cooperativity between Transcription Factors Based on Functional Coherence and Similarity of Their Target Gene Sets.
    Wu WS; Lai FJ
    PLoS One; 2016; 11(9):e0162931. PubMed ID: 27623007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.