These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19661288)

  • 1. Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7.
    Wartosch L; Fuhrmann JC; Schweizer M; Stauber T; Jentsch TJ
    FASEB J; 2009 Dec; 23(12):4056-68. PubMed ID: 19661288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function.
    Lange PF; Wartosch L; Jentsch TJ; Fuhrmann JC
    Nature; 2006 Mar; 440(7081):220-3. PubMed ID: 16525474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration.
    Kasper D; Planells-Cases R; Fuhrmann JC; Scheel O; Zeitz O; Ruether K; Schmitt A; Poët M; Steinfeld R; Schweizer M; Kornak U; Jentsch TJ
    EMBO J; 2005 Mar; 24(5):1079-91. PubMed ID: 15706348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis.
    Novarino G; Weinert S; Rickheit G; Jentsch TJ
    Science; 2010 Jun; 328(5984):1398-401. PubMed ID: 20430975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl- accumulation.
    Weinert S; Jabs S; Supanchart C; Schweizer M; Gimber N; Richter M; Rademann J; Stauber T; Kornak U; Jentsch TJ
    Science; 2010 Jun; 328(5984):1401-3. PubMed ID: 20430974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloride channels and endocytosis: new insights from Dent's disease and CLC-5 knockout mice.
    Devuyst O
    Bull Mem Acad R Med Belg; 2004; 159(Pt 2):212-7. PubMed ID: 15615095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell biology and physiology of CLC chloride channels and transporters.
    Stauber T; Weinert S; Jentsch TJ
    Compr Physiol; 2012 Jul; 2(3):1701-44. PubMed ID: 23723021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters.
    Jentsch TJ
    J Physiol; 2007 Feb; 578(Pt 3):633-40. PubMed ID: 17110406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for chloride transport in lysosomal protein degradation.
    Wartosch L; Stauber T
    Autophagy; 2010 Jan; 6(1):158-9. PubMed ID: 20104020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloride transporters and receptor-mediated endocytosis in the renal proximal tubule.
    Devuyst O; Luciani A
    J Physiol; 2015 Sep; 593(18):4151-64. PubMed ID: 25820368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
    Scheel O; Zdebik AA; Lourdel S; Jentsch TJ
    Nature; 2005 Jul; 436(7049):424-7. PubMed ID: 16034422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological roles of CLC Cl(-)/H (+) exchangers in renal proximal tubules.
    Plans V; Rickheit G; Jentsch TJ
    Pflugers Arch; 2009 May; 458(1):23-37. PubMed ID: 18853181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypertonicity increases CLC-5 expression in mouse medullary thick ascending limb cells.
    Pham PC; Devuyst O; Pham PT; Matsumoto N; Shih RN; Jo OD; Yanagawa N; Sun AM
    Am J Physiol Renal Physiol; 2004 Oct; 287(4):F747-52. PubMed ID: 15161605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ClC-5 chloride channel knock-out mouse - an animal model for Dent's disease.
    Günther W; Piwon N; Jentsch TJ
    Pflugers Arch; 2003 Jan; 445(4):456-62. PubMed ID: 12548389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6.
    Poët M; Kornak U; Schweizer M; Zdebik AA; Scheel O; Hoelter S; Wurst W; Schmitt A; Fuhrmann JC; Planells-Cases R; Mole SE; Hübner CA; Jentsch TJ
    Proc Natl Acad Sci U S A; 2006 Sep; 103(37):13854-9. PubMed ID: 16950870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes.
    Graves AR; Curran PK; Smith CL; Mindell JA
    Nature; 2008 Jun; 453(7196):788-92. PubMed ID: 18449189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ClC-5: a chloride channel with multiple roles in renal tubular albumin uptake.
    Hryciw DH; Ekberg J; Pollock CA; Poronnik P
    Int J Biochem Cell Biol; 2006; 38(7):1036-42. PubMed ID: 16226913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired Autophagic Clearance with a Gain-of-Function Variant of the Lysosomal Cl
    Bose S; de Heus C; Kennedy ME; Wang F; Jentsch TJ; Klumperman J; Stauber T
    Biomolecules; 2023 Dec; 13(12):. PubMed ID: 38136669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A missense mutation accelerating the gating of the lysosomal Cl-/H+-exchanger ClC-7/Ostm1 causes osteopetrosis with gingival hamartomas in cattle.
    Sartelet A; Stauber T; Coppieters W; Ludwig CF; Fasquelle C; Druet T; Zhang Z; Ahariz N; Cambisano N; Jentsch TJ; Charlier C
    Dis Model Mech; 2014 Jan; 7(1):119-28. PubMed ID: 24159188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Function of the CLC chloride channels and their implication in human pathology].
    Vandewalle A
    Nephrologie; 2002; 23(3):113-8. PubMed ID: 12087807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.