BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 19661428)

  • 1. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water.
    Brown AE; Litvinov RI; Discher DE; Purohit PK; Weisel JW
    Science; 2009 Aug; 325(5941):741-4. PubMed ID: 19661428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers.
    Houser JR; Hudson NE; Ping L; O'Brien ET; Superfine R; Lord ST; Falvo MR
    Biophys J; 2010 Nov; 99(9):3038-47. PubMed ID: 21044602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibrin fibers have extraordinary extensibility and elasticity.
    Liu W; Jawerth LM; Sparks EA; Falvo MR; Hantgan RR; Superfine R; Lord ST; Guthold M
    Science; 2006 Aug; 313(5787):634. PubMed ID: 16888133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic behavior and platelet retraction in low- and high-density fibrin gels.
    Wufsus AR; Rana K; Brown A; Dorgan JR; Liberatore MW; Neeves KB
    Biophys J; 2015 Jan; 108(1):173-83. PubMed ID: 25564864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load.
    Britton S; Kim O; Pancaldi F; Xu Z; Litvinov RI; Weisel JW; Alber M
    Acta Biomater; 2019 Aug; 94():514-523. PubMed ID: 31152942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The elasticity of an individual fibrin fiber in a clot.
    Collet JP; Shuman H; Ledger RE; Lee S; Weisel JW
    Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9133-7. PubMed ID: 15967976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibrin Fiber Stiffness Is Strongly Affected by Fiber Diameter, but Not by Fibrinogen Glycation.
    Li W; Sigley J; Pieters M; Helms CC; Nagaswami C; Weisel JW; Guthold M
    Biophys J; 2016 Mar; 110(6):1400-10. PubMed ID: 27028649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural hierarchy governs fibrin gel mechanics.
    Piechocka IK; Bacabac RG; Potters M; Mackintosh FC; Koenderink GH
    Biophys J; 2010 May; 98(10):2281-9. PubMed ID: 20483337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The α-helix to β-sheet transition in stretched and compressed hydrated fibrin clots.
    Litvinov RI; Faizullin DA; Zuev YF; Weisel JW
    Biophys J; 2012 Sep; 103(5):1020-7. PubMed ID: 23009851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrin mechanical properties and their structural origins.
    Litvinov RI; Weisel JW
    Matrix Biol; 2017 Jul; 60-61():110-123. PubMed ID: 27553509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrin clot structure and mechanics associated with specific oxidation of methionine residues in fibrinogen.
    Weigandt KM; White N; Chung D; Ellingson E; Wang Y; Fu X; Pozzo DC
    Biophys J; 2012 Dec; 103(11):2399-407. PubMed ID: 23283239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis of fibrin clot elasticity.
    Lim BB; Lee EH; Sotomayor M; Schulten K
    Structure; 2008 Mar; 16(3):449-59. PubMed ID: 18294856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of fibrin(ogen) forced unfolding.
    Zhmurov A; Brown AE; Litvinov RI; Dima RI; Weisel JW; Barsegov V
    Structure; 2011 Nov; 19(11):1615-24. PubMed ID: 22078561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular interference of fibrin's divalent polymerization mechanism enables modulation of multiscale material properties.
    Brown AC; Baker SR; Douglas AM; Keating M; Alvarez-Elizondo MB; Botvinick EL; Guthold M; Barker TH
    Biomaterials; 2015 May; 49():27-36. PubMed ID: 25725552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein unfolding accounts for the unusual mechanical behavior of fibrin networks.
    Purohit PK; Litvinov RI; Brown AE; Discher DE; Weisel JW
    Acta Biomater; 2011 Jun; 7(6):2374-83. PubMed ID: 21342665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture toughness of fibrin gels as a function of protein volume fraction: Mechanical origins.
    Garyfallogiannis K; Ramanujam RK; Litvinov RI; Yu T; Nagaswami C; Bassani JL; Weisel JW; Purohit PK; Tutwiler V
    Acta Biomater; 2023 Mar; 159():49-62. PubMed ID: 36642339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructural and mechanical differences between digested collagen-fibrin co-gels and pure collagen and fibrin gels.
    Lai VK; Frey CR; Kerandi AM; Lake SP; Tranquillo RT; Barocas VH
    Acta Biomater; 2012 Nov; 8(11):4031-42. PubMed ID: 22828381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for the nonlinear mechanics of fibrin networks under compression.
    Kim OV; Litvinov RI; Weisel JW; Alber MS
    Biomaterials; 2014 Aug; 35(25):6739-49. PubMed ID: 24840618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Fibrin-Type I Collagen Biomaterials via an Acidic Gel.
    Wang K; Camman M; Mosser G; Haye B; Trichet L; Coradin T
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale mechanical characterization and computational modeling of fibrin gels.
    Jimenez JM; Tuttle T; Guo Y; Miles D; Buganza-Tepole A; Calve S
    Acta Biomater; 2023 May; 162():292-303. PubMed ID: 36965611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.