These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 19661590)
1. Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires. Koh SJ; Lee HP Nanotechnology; 2006 Jul; 17(14):3451-67. PubMed ID: 19661590 [TBL] [Abstract][Full Text] [Related]
2. Shock-induced breaking in the gold nanowire with the influence of defects and strain rates. Wang F; Gao Y; Zhu T; Zhao J Nanoscale; 2011 Apr; 3(4):1624-31. PubMed ID: 21350764 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics simulation of ZnO nanowires: size effects, defects, and super ductility. Dai L; Cheong WC; Sow CH; Lim CT; Tan VB Langmuir; 2010 Jan; 26(2):1165-71. PubMed ID: 19711920 [TBL] [Abstract][Full Text] [Related]
4. Uniaxial tension-induced fracture in gold nanowires with the dependence on size and atomic vacancies. Wang F; Dai Y; Zhao J; Li Q Phys Chem Chem Phys; 2014 Dec; 16(45):24716-26. PubMed ID: 25315454 [TBL] [Abstract][Full Text] [Related]
5. Strain Loading Mode Dependent Bandgap Deformation Potential in ZnO Micro/Nanowires. Fu X; Liao ZM; Liu R; Lin F; Xu J; Zhu R; Zhong W; Liu Y; Guo W; Yu D ACS Nano; 2015 Dec; 9(12):11960-7. PubMed ID: 26517647 [TBL] [Abstract][Full Text] [Related]
6. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires. Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755 [TBL] [Abstract][Full Text] [Related]
7. In situ observation of size-scale effects on the mechanical properties of ZnO nanowires. Asthana A; Momeni K; Prasad A; Yap YK; Yassar RS Nanotechnology; 2011 Jul; 22(26):265712. PubMed ID: 21586815 [TBL] [Abstract][Full Text] [Related]
9. Temperature-pressure-induced solid-solid <100> to <110> reorientation in FCC metallic nanowire: a molecular dynamic study. Sutrakar VK; Roy Mahapatra D; Pillai AC J Phys Condens Matter; 2012 Jan; 24(1):015401. PubMed ID: 22133560 [TBL] [Abstract][Full Text] [Related]
10. Nanowire failure: long = brittle and short = ductile. Wu Z; Zhang YW; Jhon MH; Gao H; Srolovitz DJ Nano Lett; 2012 Feb; 12(2):910-4. PubMed ID: 22214242 [TBL] [Abstract][Full Text] [Related]
11. Role of surface oxidation on the size dependent mechanical properties of nickel nanowires: a ReaxFF molecular dynamics study. Aral G; Islam MM; van Duin ACT Phys Chem Chem Phys; 2017 Dec; 20(1):284-298. PubMed ID: 29205239 [TBL] [Abstract][Full Text] [Related]
12. Plasmonic tuning of silver nanowires by laser shock induced lateral compression. Kumar P; Li J; Nian Q; Hu Y; Cheng GJ Nanoscale; 2013 Jul; 5(14):6311-7. PubMed ID: 23749208 [TBL] [Abstract][Full Text] [Related]
13. A computational and experimental investigation of the mechanical properties of single ZnTe nanowires. Davami K; Mortazavi B; Ghassemi HM; Yassar RS; Lee JS; Rémond Y; Meyyappan M Nanoscale; 2012 Feb; 4(3):897-903. PubMed ID: 22173853 [TBL] [Abstract][Full Text] [Related]
14. Statistical analysis of the breaking processes of Ni nanowires. García-Mochales P; Paredes R; Peláez S; Serena PA Nanotechnology; 2008 Jun; 19(22):225704. PubMed ID: 21825771 [TBL] [Abstract][Full Text] [Related]
15. Size-Dependent Mechanical Properties of Amorphous SiO Sun K; Chen J; Wu B; Wang L; Fang L Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33198310 [TBL] [Abstract][Full Text] [Related]
16. Coupled effect of size, strain rate, and temperature on the shape memory of a pentagonal Cu nanowire. Sutrakar VK; Mahapatra DR Nanotechnology; 2009 Jan; 20(4):045701. PubMed ID: 19417327 [TBL] [Abstract][Full Text] [Related]
17. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Wu Y; Xiang J; Yang C; Lu W; Lieber CM Nature; 2004 Jul; 430(6995):61-5. PubMed ID: 15229596 [TBL] [Abstract][Full Text] [Related]
18. Numerical investigations into the tensile behavior of TiO(2) nanowires: structural deformation, mechanical properties, and size effects. Dai L; Sow CH; Lim CT; Cheong WC; Tan VB Nano Lett; 2009 Feb; 9(2):576-82. PubMed ID: 19159252 [TBL] [Abstract][Full Text] [Related]
19. Computational nanomechanics and thermal transport in nanotubes and nanowires. Srivastava D; Makeev MA; Menon M; Osman M J Nanosci Nanotechnol; 2008 Jul; 8(7):3628-51. PubMed ID: 19051922 [TBL] [Abstract][Full Text] [Related]
20. Near-ideal strength in gold nanowires achieved through microstructural design. Deng C; Sansoz F ACS Nano; 2009 Oct; 3(10):3001-8. PubMed ID: 19743833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]