These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 19662103)

  • 1. Bio-inspired Synthesis of Mineralized Collagen Fibrils.
    Deshpande AS; Beniash E
    Cryst Growth Des; 2008 Aug; 8(8):3084-3090. PubMed ID: 19662103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amelogenin-collagen interactions regulate calcium phosphate mineralization in vitro.
    Deshpande AS; Fang PA; Simmer JP; Margolis HC; Beniash E
    J Biol Chem; 2010 Jun; 285(25):19277-87. PubMed ID: 20404336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteopontin regulates type I collagen fibril formation in bone tissue.
    Depalle B; McGilvery CM; Nobakhti S; Aldegaither N; Shefelbine SJ; Porter AE
    Acta Biomater; 2021 Jan; 120():194-202. PubMed ID: 32344173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible role of DMP1 in dentin mineralization.
    Beniash E; Deshpande AS; Fang PA; Lieb NS; Zhang X; Sfeir CS
    J Struct Biol; 2011 Apr; 174(1):100-6. PubMed ID: 21081166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The locus of mineral crystallites in bone.
    Lees S; Prostak K
    Connect Tissue Res; 1988; 18(1):41-54. PubMed ID: 3180814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of bone-like nanocomposites using multiphosphorylated peptides.
    Sfeir C; Fang PA; Jayaraman T; Raman A; Xiaoyuan Z; Beniash E
    Acta Biomater; 2014 May; 10(5):2241-9. PubMed ID: 24434535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomineralization of Collagen-Based Materials for Hard Tissue Repair.
    Yu L; Wei M
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternate soaking enables easy control of mineralized collagen scaffold mechanics from nano- to macro-scale.
    Grue BH; Vincent LC; Kreplak L; Veres SP
    J Mech Behav Biomed Mater; 2020 Oct; 110():103863. PubMed ID: 32957181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements.
    Takano Y; Turner CH; Burr DB
    J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Molecular Weight and Concentration of Poly(Acrylic Acid) on Biomimetic Mineralization of Collagen.
    Qi Y; Ye Z; Fok A; Holmes BN; Espanol M; Ginebra MP; Aparicio C
    ACS Biomater Sci Eng; 2018 Aug; 4(8):2758-2766. PubMed ID: 30581990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Direct Electric Field-Aided Biomimetic Mineralization System for Inducing the Remineralization of Dentin Collagen Matrix.
    Wu XT; Mei ML; Li QL; Cao CY; Chen JL; Xia R; Zhang ZH; Chu CH
    Materials (Basel); 2015 Nov; 8(11):7889-7899. PubMed ID: 28793685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dentin matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro.
    He G; George A
    J Biol Chem; 2004 Mar; 279(12):11649-56. PubMed ID: 14699165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone mineral organization at the mesoscale: A review of mineral ellipsoids in bone and at bone interfaces.
    Micheletti C; Hurley A; Gourrier A; Palmquist A; Tang T; Shah FA; Grandfield K
    Acta Biomater; 2022 Apr; 142():1-13. PubMed ID: 35202855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural changes in collagen fibrils across a mineralized interface revealed by cryo-TEM.
    Quan BD; Sone ED
    Bone; 2015 Aug; 77():42-9. PubMed ID: 25892483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel (Americanus americanus) and herring (Clupea harengus) bone.
    Lee DD; Glimcher MJ
    J Mol Biol; 1991 Feb; 217(3):487-501. PubMed ID: 1994036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic mineralization of collagen fibrils induced by amine-terminated PAMAM dendrimers--PAMAM dendrimers for remineralization.
    Liang K; Gao Y; Li J; Liao Y; Xiao S; Zhou X; Li J
    J Biomater Sci Polym Ed; 2015; 26(14):963-74. PubMed ID: 26140519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrafibrillar Mineralization of Self-Assembled Elastin-Like Recombinamer Fibrils.
    Li Y; Rodriguez-Cabello JC; Aparicio C
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5838-5846. PubMed ID: 28127954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward the Understanding of Small Protein-Mediated Collagen Intrafibrillar Mineralization.
    Wang Z; Ustriyana P; Chen K; Zhao W; Xu Z; Sahai N
    ACS Biomater Sci Eng; 2020 Jul; 6(7):4247-4255. PubMed ID: 33463336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: influence of polymer molecular weight.
    Jee SS; Thula TT; Gower LB
    Acta Biomater; 2010 Sep; 6(9):3676-86. PubMed ID: 20359554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.