BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19662161)

  • 1. P-type ATPase TAT-2 negatively regulates monomethyl branched-chain fatty acid mediated function in post-embryonic growth and development in C. elegans.
    Seamen E; Blanchette JM; Han M
    PLoS Genet; 2009 Aug; 5(8):e1000589. PubMed ID: 19662161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peroxisome protein transportation affects metabolism of branched-chain fatty acids that critically impact growth and development of C. elegans.
    Wang R; Kniazeva M; Han M
    PLoS One; 2013; 8(9):e76270. PubMed ID: 24086720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monomethyl branched-chain fatty acids play an essential role in Caenorhabditis elegans development.
    Kniazeva M; Crawford QT; Seiber M; Wang CY; Han M
    PLoS Biol; 2004 Sep; 2(9):E257. PubMed ID: 15340492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency.
    Jia F; Cui M; Than MT; Han M
    J Biol Chem; 2016 Feb; 291(6):2967-73. PubMed ID: 26683372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal apical polarity mediates regulation of TORC1 by glucosylceramide in C. elegans.
    Zhu H; Sewell AK; Han M
    Genes Dev; 2015 Jun; 29(12):1218-23. PubMed ID: 26109047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel sphingolipid-TORC1 pathway critically promotes postembryonic development in Caenorhabditis elegans.
    Zhu H; Shen H; Sewell AK; Kniazeva M; Han M
    Elife; 2013 May; 2():e00429. PubMed ID: 23705068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C. elegans P4-ATPase TAT-1 regulates lysosome biogenesis and endocytosis.
    Ruaud AF; Nilsson L; Richard F; Larsen MK; Bessereau JL; Tuck S
    Traffic; 2009 Jan; 10(1):88-100. PubMed ID: 18939953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function analysis of the
    Chen YZ; Klöditz K; Lee ES; Nguyen DP; Yuan Q; Johnson J; Lee-Yow Y; Hall A; Mitani S; Xia NS; Fadeel B; Xue D
    J Cell Sci; 2019 Feb; 132(5):. PubMed ID: 30683797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An unexpectedly high degree of specialization and a widespread involvement in sterol metabolism among the C. elegans putative aminophospholipid translocases.
    Lyssenko NN; Miteva Y; Gilroy S; Hanna-Rose W; Schlegel RA
    BMC Dev Biol; 2008 Oct; 8():96. PubMed ID: 18831765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monomethyl branched-chain fatty acids are critical for Caenorhabitis elegans survival in elevated glucose conditions.
    Vieira AFC; Xatse MA; Tifeki H; Diot C; Walhout AJM; Olsen CP
    J Biol Chem; 2022 Feb; 298(2):101444. PubMed ID: 34826420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EAT-2 attenuates C. elegans development via metabolic remodeling in a chemically defined food environment.
    Cao X; Xie Y; Yang H; Sun P; Xue B; Garcia LR; Zhang L
    Cell Mol Life Sci; 2023 Jul; 80(8):205. PubMed ID: 37450052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monomethyl branched-chain fatty acid mediates amino acid sensing upstream of mTORC1.
    Zhu M; Teng F; Li N; Zhang L; Zhang S; Xu F; Shao J; Sun H; Zhu H
    Dev Cell; 2021 Oct; 56(19):2692-2702.e5. PubMed ID: 34610328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of Caenorhabditis elegans aminopeptidase DNPP-1 restores endocytic sorting and recycling in tat-1 mutants.
    Li X; Chen B; Yoshina S; Cai T; Yang F; Mitani S; Wang X
    Mol Biol Cell; 2013 Apr; 24(8):1163-75. PubMed ID: 23427264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A branched-chain fatty acid is involved in post-embryonic growth control in parallel to the insulin receptor pathway and its biosynthesis is feedback-regulated in C. elegans.
    Kniazeva M; Euler T; Han M
    Genes Dev; 2008 Aug; 22(15):2102-10. PubMed ID: 18676815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LET-767 is required for the production of branched chain and long chain fatty acids in Caenorhabditis elegans.
    Entchev EV; Schwudke D; Zagoriy V; Matyash V; Bogdanova A; Habermann B; Zhu L; Shevchenko A; Kurzchalia TV
    J Biol Chem; 2008 Jun; 283(25):17550-60. PubMed ID: 18390550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C. Elegans Fatty Acid Two-Hydroxylase Regulates Intestinal Homeostasis by Affecting Heptadecenoic Acid Production.
    Li Y; Wang C; Huang Y; Fu R; Zheng H; Zhu Y; Shi X; Padakanti PK; Tu Z; Su X; Zhang H
    Cell Physiol Biochem; 2018; 49(3):947-960. PubMed ID: 30184537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endocytic sorting and recycling require membrane phosphatidylserine asymmetry maintained by TAT-1/CHAT-1.
    Chen B; Jiang Y; Zeng S; Yan J; Li X; Zhang Y; Zou W; Wang X
    PLoS Genet; 2010 Dec; 6(12):e1001235. PubMed ID: 21170358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanistic basis for the coordinated regulation of pharyngeal morphogenesis in Caenorhabditis elegans by LIN-35/Rb and UBC-18-ARI-1.
    Mani K; Fay DS
    PLoS Genet; 2009 Jun; 5(6):e1000510. PubMed ID: 19521497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of C. elegans TAT-1 protein in maintaining plasma membrane phosphatidylserine asymmetry.
    Darland-Ransom M; Wang X; Sun CL; Mapes J; Gengyo-Ando K; Mitani S; Xue D
    Science; 2008 Apr; 320(5875):528-31. PubMed ID: 18436785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caenorhabditis elegans numb inhibits endocytic recycling by binding TAT-1 aminophospholipid translocase.
    Nilsson L; Jonsson E; Tuck S
    Traffic; 2011 Dec; 12(12):1839-49. PubMed ID: 21917090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.