These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 196624)

  • 1. Model studies for molybdenum enzymes. Reduction of cytochrome c complexes by mu-oxo-bis[oxodihydroxo(L-cysteinato)molybdate(V)].
    Lawrence GD; Spence JT
    Biochemistry; 1977 Jul; 16(14):3087-90. PubMed ID: 196624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model studies for molybdenum enzymes. The reduction of cytochrome c by molybdenum(V)-cysteine complexes.
    Lawrence GD; Spence JT
    Biochemistry; 1975 Aug; 14(16):3626-30. PubMed ID: 240386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model studies for molybdenum enzymes. Reduction of flavines by mu-oxo-bis(oxodihydroxo(L-cysteinato)molybdate(V)).
    Kroneck P; Spence JT
    Biochemistry; 1973 Nov; 12(24):5020-4. PubMed ID: 4357555
    [No Abstract]   [Full Text] [Related]  

  • 4. Generation of bis(dithiolene)dioxomolybdenum(VI) complexes from bis(dithiolene)monooxomolybdenum(IV) complexes by proton-coupled electron transfer in aqueous media.
    Sugimoto H; Tano H; Miyake H; Itoh S
    Dalton Trans; 2011 Mar; 40(10):2358-65. PubMed ID: 21246143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of configurational gating in intracomplex electron transfer from cytochrome c to the radical cation in cytochrome c peroxidase.
    Mei H; Wang K; Peffer N; Weatherly G; Cohen DS; Miller M; Pielak G; Durham B; Millett F
    Biochemistry; 1999 May; 38(21):6846-54. PubMed ID: 10346906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the heme environment of horse heart ferric cytochrome c. Azide and imidazole complexes of ferric cytochrome c.
    Ikeda-Saito M; Iizuka T
    Biochim Biophys Acta; 1975 Jun; 393(2):335-42. PubMed ID: 167834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Azide, cyanide, fluoride, imidazole and pyridine binding to ferric and ferrous native horse heart cytochrome c and to its carboxymethylated derivative: a comparative study.
    Viola F; Aime S; Coletta M; Desideri A; Fasano M; Paoletti S; Tarricone C; Ascenzi P
    J Inorg Biochem; 1996 May; 62(3):213-22. PubMed ID: 8627283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic data for redox reactions of cytochrome c with Fe(CN)5X complexes and the question of association prior to electron transfer.
    Butler J; Davies DM; Sykes AG
    J Inorg Biochem; 1981 Aug; 15(1):41-53. PubMed ID: 6268746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of axial ligand replacement on the redox potential of cytochrome c.
    Liu G; Shao W; Zhu S; Tang W
    J Inorg Biochem; 1995 Nov; 60(2):123-31. PubMed ID: 8530917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferred sites for electron transfer between cytochrome c and iron and cobalt complexes.
    Butler J; Chapman SK; Davies DM; Sykes AG; Speck SH; Osheroff N; Margoliash E
    J Biol Chem; 1983 May; 258(10):6400-4. PubMed ID: 6304037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directional electron transfer in ruthenium-modified horse heart cytochrome c.
    Bechtold R; Kuehn C; Lepre C; Isied SS
    Nature; 1986 Jul 17-23; 322(6076):286-8. PubMed ID: 3016549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of C-type cytochromes with the iron hexacyanides. Mechanistic implications.
    Ohno N; Cusanovich MA
    Biophys J; 1981 Dec; 36(3):589-605. PubMed ID: 6275920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligational effects on reduction of myoglobin and horseradish peroxidase by inorganic reagents.
    Balahura RJ; Wilkins RG
    Biochim Biophys Acta; 1983 Sep; 724(3):465-72. PubMed ID: 6311260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selenium as a catalyst for the reduction of cytochrome c by glutathione.
    Levander OA; Morris VC; Higgs DJ
    Biochemistry; 1973 Nov; 12(23):4591-5. PubMed ID: 4359369
    [No Abstract]   [Full Text] [Related]  

  • 16. Intramolecular electron transfer and binding constants in iron hexacyanide-cytochrome c complexes as studied by pulse radiolysis.
    Ilan Y; Shafferman A
    Biochim Biophys Acta; 1979 Oct; 548(1):161-5. PubMed ID: 226133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Low temperature reduction of cytochrome c complexes].
    Magonov SN; Bliumenfel'd LA; Vanag VK; Davydov RM
    Biofizika; 1978; 23(3):414-8. PubMed ID: 208652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insight into the reactivity of oxotransferases by novel asymmetric dioxomolybdenum(VI) model complexes.
    Mayilmurugan R; Harum BN; Volpe M; Sax AF; Palaniandavar M; Mösch-Zanetti NC
    Chemistry; 2011 Jan; 17(2):704-13. PubMed ID: 21207592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron transfer between cytochrome c and metal hexacyanide complexes. Effect of thermodynamic driving force on the electron transfer rate.
    Cho KC; Chu WF; Choy CL; Che CM
    Biochim Biophys Acta; 1989 Jan; 973(1):53-8. PubMed ID: 2536552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ordered complexes of cytochrome c fragments. Kinetics of formation of the reduced (ferrous) forms.
    Parr GR; Taniuchi H
    J Biol Chem; 1981 Jan; 256(1):125-32. PubMed ID: 6256341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.