These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 19662994)

  • 1. [Application of self-assembling peptide nanofiber scaffold in nerve tissue engineering].
    Wang B; Shao Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Jul; 23(7):861-3. PubMed ID: 19662994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of self-assembled IKVAV peptide nanofibers on olfactory ensheathing cells].
    Xu H; Shao Z; Wu Y; Deng C; Yu X; Ding F; Zhang B; Xu W
    Sheng Wu Gong Cheng Xue Bao; 2009 Feb; 25(2):292-8. PubMed ID: 19459338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of nanofibrous scaffolds in neural tissue engineering.
    Cao H; Liu T; Chew SY
    Adv Drug Deliv Rev; 2009 Oct; 61(12):1055-64. PubMed ID: 19643156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Research progress of self-assembling peptide nanofiber scaffold for bone repair].
    He B; Yuan X; Zhang H; Jiang D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Oct; 28(10):1303-6. PubMed ID: 25591312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Application of electrostatic spinning technology in nano-structured polymer scaffold].
    Chen D; Li M; Fang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Apr; 21(4):411-5. PubMed ID: 17546890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of self-assembling peptide nanofiber scaffolds on mouse embryonic fibroblast implantation and proliferation.
    Dégano IR; Quintana L; Vilalta M; Horna D; Rubio N; Borrós S; Semino C; Blanco J
    Biomaterials; 2009 Feb; 30(6):1156-65. PubMed ID: 19064286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration.
    Horii A; Wang X; Gelain F; Zhang S
    PLoS One; 2007 Feb; 2(2):e190. PubMed ID: 17285144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembling peptide nanofiber scaffolds, platelet-rich plasma, and mesenchymal stem cells for injectable bone regeneration with tissue engineering.
    Yoshimi R; Yamada Y; Ito K; Nakamura S; Abe A; Nagasaka T; Okabe K; Kohgo T; Baba S; Ueda M
    J Craniofac Surg; 2009 Sep; 20(5):1523-30. PubMed ID: 19816290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Proliferation and chondrogenic differentiation of precartilaginous stem cells in self-assembling peptide nanofiber scaffolds].
    Luo W; Fan J; Ye C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Dec; 26(12):1505-11. PubMed ID: 23316647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility of functionalized designer self-assembling nanofiber scaffolds containing FRM motif for neural stem cells.
    Zou Z; Liu T; Li J; Li P; Ding Q; Peng G; Zheng Q; Zeng X; Wu Y; Guo X
    J Biomed Mater Res A; 2014 May; 102(5):1286-93. PubMed ID: 23703883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility and bioactivity of designer self-assembling nanofiber scaffold containing FGL motif for rat dorsal root ganglion neurons.
    Zou Z; Zheng Q; Wu Y; Guo X; Yang S; Li J; Pan H
    J Biomed Mater Res A; 2010 Dec; 95(4):1125-31. PubMed ID: 20878982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation behaviors of electrospun resorbable polyester nanofibers.
    Dong Y; Liao S; Ngiam M; Chan CK; Ramakrishna S
    Tissue Eng Part B Rev; 2009 Sep; 15(3):333-51. PubMed ID: 19459780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forever young: how to control the elongation, differentiation, and proliferation of cells using nanotechnology.
    Ellis-Behnke RG; Liang YX; Guo J; Tay DK; Schneider GE; Teather LA; Wu W; So KF
    Cell Transplant; 2009; 18(9):1047-58. PubMed ID: 20040141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.
    Prabhakaran MP; Venugopal JR; Chyan TT; Hai LB; Chan CK; Lim AY; Ramakrishna S
    Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering.
    Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S
    Biomaterials; 2008 Dec; 29(34):4532-9. PubMed ID: 18757094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research progress of electrospun nanofibers scaffold in nerve tissue engineering].
    Hu X; Wang G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Sep; 24(9):1133-7. PubMed ID: 20939490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research progress of myocardial tissue engineering scaffold materials].
    Fang Y; Liao B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Mar; 25(3):361-4. PubMed ID: 21500594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold.
    Guo J; Su H; Zeng Y; Liang YX; Wong WM; Ellis-Behnke RG; So KF; Wu W
    Nanomedicine; 2007 Dec; 3(4):311-21. PubMed ID: 17964861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin.
    Koh HS; Yong T; Chan CK; Ramakrishna S
    Biomaterials; 2008 Sep; 29(26):3574-82. PubMed ID: 18533251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural differentiation of mouse embryonic stem cells on conductive nanofiber scaffolds.
    Kabiri M; Soleimani M; Shabani I; Futrega K; Ghaemi N; Ahvaz HH; Elahi E; Doran MR
    Biotechnol Lett; 2012 Jul; 34(7):1357-65. PubMed ID: 22476548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.