These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The next generation: using new sequencing technologies to analyse gene regulation. Cullum R; Alder O; Hoodless PA Respirology; 2011 Feb; 16(2):210-22. PubMed ID: 21077988 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide in vivo cross-linking of sequence-specific transcription factors. Li XY; Biggin MD Methods Mol Biol; 2012; 809():3-26. PubMed ID: 22113265 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide identification of DNA-protein interactions using chromatin immunoprecipitation coupled with flow cell sequencing. Hoffman BG; Jones SJ J Endocrinol; 2009 Apr; 201(1):1-13. PubMed ID: 19136617 [TBL] [Abstract][Full Text] [Related]
6. ChIP-chip comes of age for genome-wide functional analysis. Wu J; Smith LT; Plass C; Huang TH Cancer Res; 2006 Jul; 66(14):6899-902. PubMed ID: 16849531 [TBL] [Abstract][Full Text] [Related]
7. Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. Hanlon SE; Lieb JD Curr Opin Genet Dev; 2004 Dec; 14(6):697-705. PubMed ID: 15531167 [TBL] [Abstract][Full Text] [Related]
8. Epigenomics: large scale analysis of chromatin modifications and transcription factors/genome interactions. Grange T; Imbert J; Thieffry D Bioessays; 2005 Nov; 27(11):1203-5. PubMed ID: 16237667 [No Abstract] [Full Text] [Related]
9. Whole Genome Chromatin IP-Sequencing (ChIP-Seq) in Skeletal Muscle Cells. So KK; Peng XL; Sun H; Wang H Methods Mol Biol; 2017; 1668():15-25. PubMed ID: 28842899 [TBL] [Abstract][Full Text] [Related]
10. Rapid innovation in ChIP-seq peak-calling algorithms is outdistancing benchmarking efforts. Szalkowski AM; Schmid CD Brief Bioinform; 2011 Nov; 12(6):626-33. PubMed ID: 21059603 [TBL] [Abstract][Full Text] [Related]
11. ChIP-on-chip protocol for genome-wide analysis of transcription factor binding in Drosophila melanogaster embryos. Sandmann T; Jakobsen JS; Furlong EE Nat Protoc; 2006; 1(6):2839-55. PubMed ID: 17406543 [TBL] [Abstract][Full Text] [Related]
12. ChIPModule: systematic discovery of transcription factors and their cofactors from ChIP-seq data. Ding J; Cai X; Wang Y; Hu H; Li X Pac Symp Biocomput; 2013; ():320-31. PubMed ID: 23424137 [TBL] [Abstract][Full Text] [Related]
13. Native chromatin immunoprecipitation (N-ChIP) and ChIP-Seq of Schistosoma mansoni: Critical experimental parameters. Cosseau C; Azzi A; Smith K; Freitag M; Mitta G; Grunau C Mol Biochem Parasitol; 2009 Jul; 166(1):70-6. PubMed ID: 19428675 [TBL] [Abstract][Full Text] [Related]
14. An integrated workflow for analysis of ChIP-chip data. Weigelt K; Moehle C; Stempfl T; Weber B; Langmann T Biotechniques; 2008 Aug; 45(2):131-2, 134, 136 passim. PubMed ID: 18687062 [TBL] [Abstract][Full Text] [Related]
15. An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data. Xu H; Wei CL; Lin F; Sung WK Bioinformatics; 2008 Oct; 24(20):2344-9. PubMed ID: 18667444 [TBL] [Abstract][Full Text] [Related]
16. [Histone turnover in the dynamic regulation of chromatin]. Mito Y Tanpakushitsu Kakusan Koso; 2008 Apr; 53(5):658-65. PubMed ID: 18409560 [No Abstract] [Full Text] [Related]
17. ChIP-seq: welcome to the new frontier. Mardis ER Nat Methods; 2007 Aug; 4(8):613-4. PubMed ID: 17664943 [No Abstract] [Full Text] [Related]
19. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets. Shao Z; Zhang Y; Yuan GC; Orkin SH; Waxman DJ Genome Biol; 2012 Mar; 13(3):R16. PubMed ID: 22424423 [TBL] [Abstract][Full Text] [Related]
20. Mapping the genomic binding sites of the activated retinoid X receptor in murine bone marrow-derived macrophages using chromatin immunoprecipitation sequencing. Daniel B; Balint BL; Nagy ZS; Nagy L Methods Mol Biol; 2014; 1204():15-24. PubMed ID: 25182757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]