BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19663327)

  • 1. [Effect of nickel ions on physiological and corrosion activity of bacteria of sulfur cycle].
    Piliashenko-Novokhatnyĭ AI; Borets'ka MO
    Mikrobiol Z; 2009; 71(1):46-9. PubMed ID: 19663327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of nickel on the adhesion ability of Desulfovibrio desulfuricans.
    Lopes FA; Morin P; Oliveira R; Melo LF
    Colloids Surf B Biointerfaces; 2005 Dec; 46(2):127-33. PubMed ID: 16290113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism.
    Lopes FA; Morin P; Oliveira R; Melo LF
    J Appl Microbiol; 2006 Nov; 101(5):1087-95. PubMed ID: 17040232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of the biofilm biopolymers on the microbial corrosion rate of the low-carbon steel].
    Borets'ka MO; Kozlova IP
    Mikrobiol Z; 2007; 69(4):40-4. PubMed ID: 17977451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.
    Zuo R; Ornek D; Syrett BC; Green RM; Hsu CH; Mansfeld FB; Wood TK
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):275-83. PubMed ID: 12898064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of corrosion inhibitor on adhesion of sulfate-reducing bacteria to steel and their production of exopolymer complex].
    Purishch LM; Asaulenko LH; Koptieva ZhP; Kozlova IP
    Mikrobiol Z; 2004; 66(4):78-85. PubMed ID: 15515905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial stage of the biofilm formation on the NiTi and Ti6Al4V surface by the sulphur-oxidizing bacteria and sulphate-reducing bacteria.
    Cwalina B; Dec W; Michalska JK; Jaworska-Kik M; Student S
    J Mater Sci Mater Med; 2017 Sep; 28(11):173. PubMed ID: 28956213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated corrosion of pipeline steel in the presence of Desulfovibrio desulfuricans biofilm due to carbon source deprivation in CO
    Eduok U; Ohaeri E; Szpunar J
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110095. PubMed ID: 31546354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitigation of the corrosion-causing Desulfovibrio desulfuricans biofilm using an organic silicon quaternary ammonium salt in alkaline media simulated concrete pore solutions.
    Etim IN; Wei J; Dong J; Xu D; Chen N; Wei X; Su M; Ke W
    Biofouling; 2018 Nov; 34(10):1121-1137. PubMed ID: 30732464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biofilm on a metal surface as a factor of microbial corrosion].
    Borets'ka MO; Kozlova IP
    Mikrobiol Z; 2010; 72(3):57-65. PubMed ID: 20695231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Development of mono- and associative cultures of sulphate-reducing bacteria and formation of exopolymeric complex].
    Purish LM; Asaulenko LH; Ostapchuk AM
    Mikrobiol Z; 2009; 71(2):20-6. PubMed ID: 19938590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel.
    Pereira AS; Franco R; Feio MJ; Pinto C; Lampreia J; Reis MA; Calvete J; Moura I; Beech I; Lino AR; Moura JJ
    Biochem Biophys Res Commun; 1996 Apr; 221(2):414-21. PubMed ID: 8619870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Stages of biofilm formation by sulfate-reducing bacteria].
    Asaulenko LH; Purishch LM; Kozlova IP
    Mikrobiol Z; 2004; 66(3):72-9. PubMed ID: 15456221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Monosaccharide composition of exopolymer complex in Thiobacillus thioparus and Stenotrophomonas maltophilia].
    Borets'ka MO; Ostapchuk AM; Kozlova IP
    Ukr Biokhim Zh (1999); 2007; 79(5):140-4. PubMed ID: 18357787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of corrosion inhibitor on the producing of exopolymer complex by sulphate-reducing bacteria].
    Purish LM; Asaulenko LH; Kozlova IP
    Mikrobiol Z; 2007; 69(3):43-50. PubMed ID: 17682530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biologically competitive effect of Desulfovibrio desulfurican and Pseudomonas stutzeri on corrosion of X80 pipeline steel in the Shenyang soil solution.
    Fu Q; Xu J; Wei B; Qin Q; Bai Y; Yu C; Sun C
    Bioelectrochemistry; 2022 Jun; 145():108051. PubMed ID: 35065376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion.
    Dong ZH; Liu T; Liu HF
    Biofouling; 2011 May; 27(5):487-95. PubMed ID: 21604218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico.
    Neria-González I; Wang ET; Ramírez F; Romero JM; Hernández-Rodríguez C
    Anaerobe; 2006 Jun; 12(3):122-33. PubMed ID: 16765858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial Corrosion in Orthodontics.
    Gopalakrishnan U; Felicita S; Ronald B; Appavoo E; Patil S
    J Contemp Dent Pract; 2022 Jun; 23(6):569-571. PubMed ID: 36259293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated role of exogenous riboflavin in selective Desulfovibrio desulfuricans corrosion of pipeline welded joints.
    Wang Q; Zhou X; Wang B; Liu M; Li C; Tan Z; Wu T
    Bioelectrochemistry; 2023 Oct; 153():108469. PubMed ID: 37235890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.