These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

519 related articles for article (PubMed ID: 19663418)

  • 1. Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation.
    Rajagopal K; Lamm MS; Haines-Butterick LA; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 Sep; 10(9):2619-25. PubMed ID: 19663418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo design of strand-swapped beta-hairpin hydrogels.
    Nagarkar RP; Hule RA; Pochan DJ; Schneider JP
    J Am Chem Soc; 2008 Apr; 130(13):4466-74. PubMed ID: 18335936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide.
    Pochan DJ; Schneider JP; Kretsinger J; Ozbas B; Rajagopal K; Haines L
    J Am Chem Soc; 2003 Oct; 125(39):11802-3. PubMed ID: 14505386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel.
    Rughani RV; Salick DA; Lamm MS; Yucel T; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 May; 10(5):1295-304. PubMed ID: 19344123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces.
    Kretsinger JK; Haines LA; Ozbas B; Pochan DJ; Schneider JP
    Biomaterials; 2005 Sep; 26(25):5177-86. PubMed ID: 15792545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators.
    Rajagopal K; Ozbas B; Pochan DJ; Schneider JP
    Eur Biophys J; 2006 Jan; 35(2):162-9. PubMed ID: 16283291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels.
    Xu XD; Chen CS; Lu B; Cheng SX; Zhang XZ; Zhuo RX
    J Phys Chem B; 2010 Feb; 114(7):2365-72. PubMed ID: 20166681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH as a trigger of peptide beta-sheet self-assembly and reversible switching between nematic and isotropic phases.
    Aggeli A; Bell M; Carrick LM; Fishwick CW; Harding R; Mawer PJ; Radford SE; Strong AE; Boden N
    J Am Chem Soc; 2003 Aug; 125(32):9619-28. PubMed ID: 12904028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and stability of nanofibers from a milk-derived peptide.
    Guy MM; Tremblay M; Voyer N; Gauthier SF; Pouliot Y
    J Agric Food Chem; 2011 Jan; 59(2):720-6. PubMed ID: 21182295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide.
    Schneider JP; Pochan DJ; Ozbas B; Rajagopal K; Pakstis L; Kretsinger J
    J Am Chem Soc; 2002 Dec; 124(50):15030-7. PubMed ID: 12475347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning gelation kinetics and mechanical rigidity of β-hairpin peptide hydrogels via hydrophobic amino acid substitutions.
    Chen C; Gu Y; Deng L; Han S; Sun X; Chen Y; Lu JR; Xu H
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14360-8. PubMed ID: 25087842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogelation and self-assembly of Fmoc-tripeptides: unexpected influence of sequence on self-assembled fibril structure, and hydrogel modulus and anisotropy.
    Cheng G; Castelletto V; Moulton CM; Newby GE; Hamley IW
    Langmuir; 2010 Apr; 26(7):4990-8. PubMed ID: 20073495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramolecular charge interactions as a tool to control the coiled-coil-to-amyloid transformation.
    Pagel K; Wagner SC; Rezaei Araghi R; von Berlepsch H; Böttcher C; Koksch B
    Chemistry; 2008; 14(36):11442-51. PubMed ID: 19016556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I.
    Ye Z; Zhang H; Luo H; Wang S; Zhou Q; DU X; Tang C; Chen L; Liu J; Shi YK; Zhang EY; Ellis-Behnke R; Zhao X
    J Pept Sci; 2008 Feb; 14(2):152-62. PubMed ID: 18196533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and hydrogel formation studies on homologs of a lactoglobulin-derived peptide.
    Guy MM; Voyer N
    Biophys Chem; 2012 Apr; 163-164():1-10. PubMed ID: 22386803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles.
    Nowak AP; Breedveld V; Pakstis L; Ozbas B; Pine DJ; Pochan D; Deming TJ
    Nature; 2002 May; 417(6887):424-8. PubMed ID: 12024209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.