BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 19663421)

  • 1. Biodegradable star polymers functionalized with beta-cyclodextrin inclusion complexes.
    Setijadi E; Tao L; Liu J; Jia Z; Boyer C; Davis TP
    Biomacromolecules; 2009 Sep; 10(9):2699-707. PubMed ID: 19663421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach to biodegradable star polymeric architectures using disulfide coupling.
    Liu J; Liu H; Jia Z; Bulmus V; Davis TP
    Chem Commun (Camb); 2008 Dec; (48):6582-4. PubMed ID: 19057786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and spectral investigation of inclusion complex of caffeic acid with hydroxypropyl-beta-cyclodextrin.
    Zhang M; Li J; Zhang L; Chao J
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1891-5. PubMed ID: 18722807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of functionalized asymmetric star polymers containing conductive polyacetylene segments by living anionic polymerization.
    Zhao Y; Higashihara T; Sugiyama K; Hirao A
    J Am Chem Soc; 2005 Oct; 127(41):14158-9. PubMed ID: 16218590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric poly(ethylene glycol) star polymers with a cholic acid core and their aggregation properties.
    Luo J; Giguère G; Zhu XX
    Biomacromolecules; 2009 Apr; 10(4):900-6. PubMed ID: 19281151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional, star polymeric molecular carriers, built from biodegradable microgel/nanogel cores.
    Syrett JA; Haddleton DM; Whittaker MR; Davis TP; Boyer C
    Chem Commun (Camb); 2011 Feb; 47(5):1449-51. PubMed ID: 21180748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot synthesis of star-shaped macromolecules containing polyglycidol and poly(ethylene oxide) arms.
    Lapienis G; Penczek S
    Biomacromolecules; 2005; 6(2):752-62. PubMed ID: 15762639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of supramolecular polymers with alternating alpha-, beta-cyclodextrin units using conformational change induced by competitive guests.
    Miyauchi M; Harada A
    J Am Chem Soc; 2004 Sep; 126(37):11418-9. PubMed ID: 15366870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheological behavior of self-assembling PEG-beta-cyclodextrin/PEG-cholesterol hydrogels.
    van de Manakker F; Vermonden T; El Morabit N; van Nostrum CF; Hennink WE
    Langmuir; 2008 Nov; 24(21):12559-67. PubMed ID: 18828611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular interactions between beta-cyclodextrin and hydrophobically end-capped poly(ethylene glycol)s: a quartz crystal microbalance study.
    Kham K; Guerrouache M; Carbonnier B; Lazerges M; Perrot H; Millot MC
    J Colloid Interface Sci; 2007 Nov; 315(2):800-4. PubMed ID: 17692329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile preparation of well-defined AB2 Y-shaped miktoarm star polypeptide copolymer via the combination of ring-opening polymerization and click chemistry.
    Rao J; Zhang Y; Zhang J; Liu S
    Biomacromolecules; 2008 Oct; 9(10):2586-93. PubMed ID: 18611048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer bilayer formation due to specific interactions between beta-cyclodextrin and adamantane: a surface force study.
    Blomberg E; Kumpulainen A; David C; Amiel C
    Langmuir; 2004 Nov; 20(24):10449-54. PubMed ID: 15544372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform PEO star polymers synthesized in water via free radical polymerization or atom transfer radical polymerization.
    Li W; Matyjaszewski K
    Macromol Rapid Commun; 2011 Jan; 32(1):74-81. PubMed ID: 21432973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection between pinching-type and supramolecular polymer-type complexes by alpha-cyclodextrin-beta-cyclodextrin hetero-dimer and hetero-cinnamamide guest dimers.
    Takahashi H; Takashima Y; Yamaguchi H; Harada A
    J Org Chem; 2006 Jun; 71(13):4878-83. PubMed ID: 16776516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization, and evaluation as transfection reagents of double-hydrophilic star copolymers: effect of star architecture.
    Georgiou TK; Vamvakaki M; Phylactou LA; Patrickios CS
    Biomacromolecules; 2005; 6(6):2990-7. PubMed ID: 16283718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid cellular internalization of multifunctional star polymers prepared by atom transfer radical polymerization.
    Cho HY; Gao H; Srinivasan A; Hong J; Bencherif SA; Siegwart DJ; Paik HJ; Hollinger JO; Matyjaszewski K
    Biomacromolecules; 2010 Sep; 11(9):2199-203. PubMed ID: 20831270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible siRNA-polymer conjugates by RAFT polymerization.
    Heredia KL; Nguyen TH; Chang CW; Bulmus V; Davis TP; Maynard HD
    Chem Commun (Camb); 2008 Jul; (28):3245-7. PubMed ID: 18622432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile fabrication of narrowly-distributed polymeric micelles via host-guest inclusion complexation of hyperbranched polymers and cyclodextrin and its two-dimensional self-assembly.
    Sun X; Huang W; Zhou Y; Yan D
    Phys Chem Chem Phys; 2010 Oct; 12(38):11948-53. PubMed ID: 20714480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CDDP supramolecular micelles fabricated from adamantine terminated mPEG and β-cyclodextrin based seven-armed poly (L-glutamic acid)/CDDP complexes.
    Yong D; Luo Y; Du F; Huang J; Lu W; Dai Z; Yu J; Liu S
    Colloids Surf B Biointerfaces; 2013 May; 105():31-6. PubMed ID: 23352945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiarm cationic star polymers by atom transfer radical polymerization from β-cyclodextrin cores: influence of arm number and length on gene delivery.
    Xiu KM; Yang JJ; Zhao NN; Li JS; Xu FJ
    Acta Biomater; 2013 Jan; 9(1):4726-33. PubMed ID: 22917804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.