These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 19663478)

  • 21. In situ Raman and in situ XRD analysis of PdO reduction and Pd° oxidation supported on γ-Al2O3 catalyst under different atmospheres.
    Baylet A; Marécot P; Duprez D; Castellazzi P; Groppi G; Forzatti P
    Phys Chem Chem Phys; 2011 Mar; 13(10):4607-13. PubMed ID: 21279224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Support effect in high activity gold catalysts for CO oxidation.
    Comotti M; Li WC; Spliethoff B; Schüth F
    J Am Chem Soc; 2006 Jan; 128(3):917-24. PubMed ID: 16417382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings.
    Li YF; Liu ZP
    J Am Chem Soc; 2011 Oct; 133(39):15743-52. PubMed ID: 21879719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular chemistry in a zeolite: genesis of a zeolite Y-supported ruthenium complex catalyst.
    Ogino I; Gates BC
    J Am Chem Soc; 2008 Oct; 130(40):13338-46. PubMed ID: 18785737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water uptake coefficients and deliquescence of NaCl nanoparticles at atmospheric relative humidities from molecular dynamics simulations.
    Bahadur R; Russell LM
    J Chem Phys; 2008 Sep; 129(9):094508. PubMed ID: 19044878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First principles study of oxygen adsorption on Se-modified Ru nanoparticles.
    Zuluaga S; Stolbov S
    J Phys Condens Matter; 2012 Aug; 24(34):345303. PubMed ID: 22871976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of crystallite size on acetone hydrogenation over copper catalysts.
    Rao RS; Walters AB; Vannice MA
    J Phys Chem B; 2005 Feb; 109(6):2086-92. PubMed ID: 16851199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting the shape and structure of face-centered cubic gold nanocrystals smaller than 3 nm.
    Barnard AS; Curtiss LA
    Chemphyschem; 2006 Jul; 7(7):1544-53. PubMed ID: 16755641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrotalcite-supported gold catalyst for the oxidant-free dehydrogenation of benzyl alcohol: studies on support and gold size effects.
    Fang W; Chen J; Zhang Q; Deng W; Wang Y
    Chemistry; 2011 Jan; 17(4):1247-56. PubMed ID: 21243691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combinatorial approach to the study of particle size effects in electrocatalysis: synthesis of supported gold nanoparticles.
    Guerin S; Hayden BE; Pletcher D; Rendall ME; Suchsland JP; Williams LJ
    J Comb Chem; 2006; 8(5):791-8. PubMed ID: 16961416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and structural characterization of Se-modified carbon-supported Ru nanoparticles for the oxygen reduction reaction.
    Zaikovskii VI; Nagabhushana KS; Kriventsov VV; Loponov KN; Cherepanova SV; Kvon RI; Bönnemann H; Kochubey DI; Savinova ER
    J Phys Chem B; 2006 Apr; 110(13):6881-90. PubMed ID: 16570998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organometallic clusters as precursors for metallic nanoparticles: effect of cluster size, ligand set, and decomposition method.
    Li C; Zhong Z; Leong WK
    Langmuir; 2008 Sep; 24(18):10427-31. PubMed ID: 18680327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of particle size of pt and pt alloy electrocatalysts supported on carbon black by the nanocapsule method.
    Okaya K; Yano H; Uchida H; Watanabe M
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):888-95. PubMed ID: 20356295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EXAFS characterization of dendrimer-Pt nanocomposites used for the preparation of Pt/gamma-Al2O3 catalysts.
    Alexeev OS; Siani A; Lafaye G; Williams CT; Ploehn HJ; Amiridis MD
    J Phys Chem B; 2006 Dec; 110(49):24903-14. PubMed ID: 17149911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly dispersed ruthenium hydroxide supported on titanium oxide effective for liquid-phase hydrogen-transfer reactions.
    Yamaguchi K; Koike T; Kim JW; Ogasawara Y; Mizuno N
    Chemistry; 2008; 14(36):11480-7. PubMed ID: 19021181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complementary structure sensitive and insensitive catalytic relationships.
    Van Santen RA
    Acc Chem Res; 2009 Jan; 42(1):57-66. PubMed ID: 18986176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Model catalysts of supported Au nanoparticles and mass-selected clusters.
    Lim DC; Hwang CC; Ganteför G; Kim YD
    Phys Chem Chem Phys; 2010 Dec; 12(46):15172-80. PubMed ID: 20931113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrite and nitrate formation on model NOx storage materials: on the influence of particle size and composition.
    Desikusumastuti A; Qin Z; Happel M; Staudt T; Lykhach Y; Laurin M; Rohr F; Shaikhutdinov S; Libuda J
    Phys Chem Chem Phys; 2009 Apr; 11(14):2514-24. PubMed ID: 19325986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis.
    den Breejen JP; Radstake PB; Bezemer GL; Bitter JH; Frøseth V; Holmen A; de Jong KP
    J Am Chem Soc; 2009 May; 131(20):7197-203. PubMed ID: 19402702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ruthenium nanoparticles on nano-level-controlled carbon supports as highly effective catalysts for arene hydrogenation.
    Takasaki M; Motoyama Y; Higashi K; Yoon SH; Mochida I; Nagashima H
    Chem Asian J; 2007 Dec; 2(12):1524-33. PubMed ID: 17973283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.