These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 19663502)
1. Trapping an intermediate of dinitrogen (N2) reduction on nitrogenase. Barney BM; Lukoyanov D; Igarashi RY; Laryukhin M; Yang TC; Dean DR; Hoffman BM; Seefeldt LC Biochemistry; 2009 Sep; 48(38):9094-102. PubMed ID: 19663502 [TBL] [Abstract][Full Text] [Related]
2. Interaction of acetylene and cyanide with the resting state of nitrogenase alpha-96-substituted MoFe proteins. Benton PM; Mayer SM; Shao J; Hoffman BM; Dean DR; Seefeldt LC Biochemistry; 2001 Nov; 40(46):13816-25. PubMed ID: 11705370 [TBL] [Abstract][Full Text] [Related]
3. Trapping a hydrazine reduction intermediate on the nitrogenase active site. Barney BM; Laryukhin M; Igarashi RY; Lee HI; Dos Santos PC; Yang TC; Hoffman BM; Dean DR; Seefeldt LC Biochemistry; 2005 Jun; 44(22):8030-7. PubMed ID: 15924422 [TBL] [Abstract][Full Text] [Related]
4. Localization of a substrate binding site on the FeMo-cofactor in nitrogenase: trapping propargyl alcohol with an alpha-70-substituted MoFe protein. Benton PM; Laryukhin M; Mayer SM; Hoffman BM; Dean DR; Seefeldt LC Biochemistry; 2003 Aug; 42(30):9102-9. PubMed ID: 12885243 [TBL] [Abstract][Full Text] [Related]
5. Diazene (HN=NH) is a substrate for nitrogenase: insights into the pathway of N2 reduction. Barney BM; McClead J; Lukoyanov D; Laryukhin M; Yang TC; Dean DR; Hoffman BM; Seefeldt LC Biochemistry; 2007 Jun; 46(23):6784-94. PubMed ID: 17508723 [TBL] [Abstract][Full Text] [Related]
6. Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover. Chan JM; Christiansen J; Dean DR; Seefeldt LC Biochemistry; 1999 May; 38(18):5779-85. PubMed ID: 10231529 [TBL] [Abstract][Full Text] [Related]
7. Role of the MoFe protein alpha-subunit histidine-195 residue in FeMo-cofactor binding and nitrogenase catalysis. Kim CH; Newton WE; Dean DR Biochemistry; 1995 Mar; 34(9):2798-808. PubMed ID: 7893691 [TBL] [Abstract][Full Text] [Related]
8. 14N electron spin-echo envelope modulation of the S = 3/2 spin system of the Azotobacter vinelandii nitrogenase iron-molybdenum cofactor. Lee HI; Thrasher KS; Dean DR; Newton WE; Hoffman BM Biochemistry; 1998 Sep; 37(38):13370-8. PubMed ID: 9748344 [TBL] [Abstract][Full Text] [Related]
9. Localization of a catalytic intermediate bound to the FeMo-cofactor of nitrogenase. Igarashi RY; Dos Santos PC; Niehaus WG; Dance IG; Dean DR; Seefeldt LC J Biol Chem; 2004 Aug; 279(33):34770-5. PubMed ID: 15181010 [TBL] [Abstract][Full Text] [Related]
10. 57Fe ENDOR spectroscopy and 'electron inventory' analysis of the nitrogenase E4 intermediate suggest the metal-ion core of FeMo-cofactor cycles through only one redox couple. Doan PE; Telser J; Barney BM; Igarashi RY; Dean DR; Seefeldt LC; Hoffman BM J Am Chem Soc; 2011 Nov; 133(43):17329-40. PubMed ID: 21980917 [TBL] [Abstract][Full Text] [Related]
11. Intermediates trapped during nitrogenase reduction of N triple bond N, CH3-N=NH, and H2N-NH2. Barney BM; Yang TC; Igarashi RY; Dos Santos PC; Laryukhin M; Lee HI; Hoffman BM; Dean DR; Seefeldt LC J Am Chem Soc; 2005 Nov; 127(43):14960-1. PubMed ID: 16248599 [TBL] [Abstract][Full Text] [Related]
13. Is Mo involved in hydride binding by the four-electron reduced (E4) intermediate of the nitrogenase MoFe protein? Lukoyanov D; Yang ZY; Dean DR; Seefeldt LC; Hoffman BM J Am Chem Soc; 2010 Mar; 132(8):2526-7. PubMed ID: 20121157 [TBL] [Abstract][Full Text] [Related]
14. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase. Dilworth MJ; Fisher K; Kim CH; Newton WE Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864 [TBL] [Abstract][Full Text] [Related]
15. Evidence for multiple substrate-reduction sites and distinct inhibitor-binding sites from an altered Azotobacter vinelandii nitrogenase MoFe protein. Shen J; Dean DR; Newton WE Biochemistry; 1997 Apr; 36(16):4884-94. PubMed ID: 9125509 [TBL] [Abstract][Full Text] [Related]
16. Electron paramagnetic resonance analysis of different Azotobacter vinelandii nitrogenase MoFe-protein conformations generated during enzyme turnover: evidence for S = 3/2 spin states from reduced MoFe-protein intermediates. Fisher K; Newton WE; Lowe DJ Biochemistry; 2001 Mar; 40(11):3333-9. PubMed ID: 11258953 [TBL] [Abstract][Full Text] [Related]
17. Connecting nitrogenase intermediates with the kinetic scheme for N2 reduction by a relaxation protocol and identification of the N2 binding state. Lukoyanov D; Barney BM; Dean DR; Seefeldt LC; Hoffman BM Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1451-5. PubMed ID: 17251348 [TBL] [Abstract][Full Text] [Related]
18. Climbing nitrogenase: toward a mechanism of enzymatic nitrogen fixation. Hoffman BM; Dean DR; Seefeldt LC Acc Chem Res; 2009 May; 42(5):609-19. PubMed ID: 19267458 [TBL] [Abstract][Full Text] [Related]
19. The NifZ accessory protein has an equivalent function in maturation of both nitrogenase MoFe protein P-clusters. Jimenez-Vicente E; Yang ZY; Martin Del Campo JS; Cash VL; Seefeldt LC; Dean DR J Biol Chem; 2019 Apr; 294(16):6204-6213. PubMed ID: 30846561 [TBL] [Abstract][Full Text] [Related]
20. Nitrogenase-catalyzed ethane production and CO-sensitive hydrogen evolution from MoFe proteins having amino acid substitutions in an alpha-subunit FeMo cofactor-binding domain. Scott DJ; Dean DR; Newton WE J Biol Chem; 1992 Oct; 267(28):20002-10. PubMed ID: 1328190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]