These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 196638)

  • 1. Characterization of guanidinated cytochrome c by 13C nuclear magnetic resonance spectroscopy.
    Stellwagen E; Smith LM; Cass R; Ledger R; Wilgus H
    Biochemistry; 1977 Aug; 16(16):3672-9. PubMed ID: 196638
    [No Abstract]   [Full Text] [Related]  

  • 2. Carbon-13 nuclear magnetic resonance spectroscopy of [2-13C]carboxymethylcytochrome c.
    Eakin RT; Morgan LO; Matwiyoff NA
    Biochemistry; 1975 Oct; 14(20):4538-43. PubMed ID: 169897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysine to 13C-labeled homoarginine conversion in microbial cytochromes c. Electron transport rates and 13C nuclear magnetic resonance spectroscopy.
    Kennelly PJ; Timkovich R; Cusanovich MA
    J Mol Biol; 1981 Jan; 145(3):583-602. PubMed ID: 6167726
    [No Abstract]   [Full Text] [Related]  

  • 4. Ionization of tyrosine residues in horse-heart ferricytochrome c and its guanidinated and acetylated-guanidinated derivatives.
    Cronin JR; Farringer BA; Nieman RA; Gust D
    Biochim Biophys Acta; 1985 Apr; 828(3):325-35. PubMed ID: 2985119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-13 nuclear magnetic resonance of heme carbonyls. Cytochrome c and carboxymethyl derivatives of cytochrome c.
    Morgan LO; Eakin RT; Vergamimi PJ; Matwiyoff NA
    Biochemistry; 1976 May; 15(10):2203-7. PubMed ID: 6042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of lysine-41 in ribonuclease A studied by proton-magnetic-resonance spectroscopy of guanidinated ribonuclease A.
    Brown LR; Bradbury JH
    Eur J Biochem; 1976 Sep; 68(1):227-35. PubMed ID: 9284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexation of iron hexacyanides by cytochrome c. Evidence for electron exchange at the exposed heme edge.
    Stellwagen E; Cass RD
    J Biol Chem; 1975 Mar; 250(6):2095-8. PubMed ID: 234955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of epsilon-N-trimethyllysine residues of proteins by natural abundance carbon-13 nuclear magnetic resonance spectroscopy.
    Wilbur DJ; Allerhand A
    FEBS Lett; 1977 Mar; 74(2):272-4. PubMed ID: 191294
    [No Abstract]   [Full Text] [Related]  

  • 9. Nuclear magnetic resonance study of the interaction of cytochrome c with cytochrome c peroxidase.
    Gupta RK; Yonetani T
    Biochim Biophys Acta; 1973 Feb; 292(2):502-8. PubMed ID: 4349923
    [No Abstract]   [Full Text] [Related]  

  • 10. [The effect of reversed micelles of cetyltrimethylammonium bromide on equilibrium constants and kinetics of oxidation-reduction reactions with the participation of cytochrome c].
    Iushchishina AN; Genkin MV; Koroteev SV; MalievskiÄ­ AD; Davydov RM
    Mol Biol (Mosk); 1988; 22(6):1650-7. PubMed ID: 2855257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basis of thermostability in pig heart lactate dehydrogenase treated with O-methylisourea.
    Minotani N; Sekiguchi T; Bautista JG; Nosoh Y
    Biochim Biophys Acta; 1979 Dec; 581(2):334-41. PubMed ID: 518917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 13C-NMR spectroscopy of acetyltyrosyl-guanidinated horse heart cytochrome c.
    Nieman RA; Gust D; Cronin JR
    Biochim Biophys Acta; 1982 May; 704(1):144-55. PubMed ID: 6284236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 19F nuclear magnetic resonance study of the interaction between cytochrome c and cytochrome c peroxidase.
    Smith MB; Millett F
    Biochim Biophys Acta; 1980 Nov; 626(1):64-72. PubMed ID: 6257307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of specific trifluoroacetylation of individual cytochrome c lysines on the reaction with cytochrome oxidase.
    Staudenmayer N; Ng S; Smith MB; Millett F
    Biochemistry; 1977 Feb; 16(4):600-4. PubMed ID: 189807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-induced conformational transitions of ferricytochrome c: a carbon-13 and deuterium nuclear magnetic resonance study.
    Wooten JB; Cohen JS; Vig I; Schejter A
    Biochemistry; 1981 Sep; 20(19):5394-402. PubMed ID: 6271186
    [No Abstract]   [Full Text] [Related]  

  • 16. Is lysine 79 a ligand for iron hexacyanides bound to cytochrome c?
    Power SD; Choucair A; Palmer G
    Biochem Biophys Res Commun; 1975 Sep; 66(1):103-7. PubMed ID: 240356
    [No Abstract]   [Full Text] [Related]  

  • 17. Nuclear magnetic resonance study of the rate of electron transfer between cytochrome c and iron hexacyanides.
    Stellwagen E; Shulman RG
    J Mol Biol; 1973 Nov; 80(4):559-73. PubMed ID: 4359198
    [No Abstract]   [Full Text] [Related]  

  • 18. Carbon-13 nuclear magnetic resonance: new techniques.
    Allerhand A
    Methods Enzymol; 1979; 61():458-549. PubMed ID: 225639
    [No Abstract]   [Full Text] [Related]  

  • 19. Alkaline isomerization of ferricytochrome c: identification of the lysine ligand.
    Wilgus H; Stellwagen E
    Proc Natl Acad Sci U S A; 1974 Jul; 71(7):2892-4. PubMed ID: 4368392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome c: observation of numerous single-carbon sites of the reduced and oxidized species by means of natural-abundance 13C nuclear magnetic resonance spectroscopy.
    Oldfield E; Allerhand A
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3531-5. PubMed ID: 4357878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.