These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19663865)

  • 21. Axonal regeneration and remyelination evaluation of chitosan/gelatin-based nerve guide combined with transforming growth factor-β1 and Schwann cells.
    Nie X; Deng M; Yang M; Liu L; Zhang Y; Wen X
    Cell Biochem Biophys; 2014 Jan; 68(1):163-72. PubMed ID: 23740553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peripheral nerve repair of transplanted undifferentiated adipose tissue-derived stem cells in a biodegradable reinforced nerve conduit.
    Shen CC; Yang YC; Liu BS
    J Biomed Mater Res A; 2012 Jan; 100(1):48-63. PubMed ID: 21972223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable Bisvinyl Sulfonemethyl-crosslinked Gelatin Conduit Promotes Regeneration after Peripheral Nerve Injury in Adult Rats.
    Ko CH; Shie MY; Lin JH; Chen YW; Yao CH; Chen YS
    Sci Rep; 2017 Dec; 7(1):17489. PubMed ID: 29235541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genipin-Cross-Linked Chitosan Nerve Conduits Containing TNF-α Inhibitors for Peripheral Nerve Repair.
    Zhang L; Zhao W; Niu C; Zhou Y; Shi H; Wang Y; Yang Y; Tang X
    Ann Biomed Eng; 2018 Jul; 46(7):1013-1025. PubMed ID: 29603044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Study on the temporal change of properties of genipin crosslinked gelatin].
    Jin X; Yan J; Zhou L; Ji Y; Yang X; Xu G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):150-3. PubMed ID: 18435279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Use of Genipin as an Effective, Biocompatible, Anti-Inflammatory Cross-Linking Method for Nerve Guidance Conduits.
    Kočí Z; Sridharan R; Hibbitts AJ; Kneafsey SL; Kearney CJ; O'Brien FJ
    Adv Biosyst; 2020 Mar; 4(3):e1900212. PubMed ID: 32293152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microwave irradiated collagen tubes as a better matrix for peripheral nerve regeneration.
    Ahmed MR; Vairamuthu S; Shafiuzama M; Basha SH; Jayakumar R
    Brain Res; 2005 Jun; 1046(1-2):55-67. PubMed ID: 15927550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BD™ PuraMatrix™ peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration.
    McGrath AM; Novikova LN; Novikov LN; Wiberg M
    Brain Res Bull; 2010 Oct; 83(5):207-13. PubMed ID: 20633614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical properties and permeability of porous chitosan-poly(p-dioxanone)/silk fibroin conduits used for peripheral nerve repair.
    Wu H; Zhang J; Luo Y; Wan Y; Sun S
    J Mech Behav Biomed Mater; 2015 Oct; 50():192-205. PubMed ID: 26143352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro and in vivo evaluation of a biodegradable chitosan-PLA composite peripheral nerve guide conduit material.
    Xie F; Li QF; Gu B; Liu K; Shen GX
    Microsurgery; 2008; 28(6):471-9. PubMed ID: 18623157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of high outflow permeability in asymmetric poly(dl-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration.
    Chang CJ; Hsu SH
    Biomaterials; 2006 Mar; 27(7):1035-42. PubMed ID: 16098582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transplantation of Schwann cells in a collagen tube for the repair of large, segmental peripheral nerve defects in rats.
    Berrocal YA; Almeida VW; Gupta R; Levi AD
    J Neurosurg; 2013 Sep; 119(3):720-32. PubMed ID: 23746104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of low-intensity ultrasound on peripheral nerve regeneration in poly(DL-lactic acid-co-glycolic acid) conduits seeded with Schwann cells.
    Chang CJ; Hsu SH
    Ultrasound Med Biol; 2004 Aug; 30(8):1079-84. PubMed ID: 15474752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multichanneled collagen conduits for peripheral nerve regeneration: design, fabrication, and characterization.
    Yao L; Billiar KL; Windebank AJ; Pandit A
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1585-96. PubMed ID: 20528663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels.
    Tonda-Turo C; Gnavi S; Ruini F; Gambarotta G; Gioffredi E; Chiono V; Perroteau I; Ciardelli G
    J Tissue Eng Regen Med; 2017 Jan; 11(1):197-208. PubMed ID: 24737714
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration.
    Bian YZ; Wang Y; Aibaidoula G; Chen GQ; Wu Q
    Biomaterials; 2009 Jan; 30(2):217-25. PubMed ID: 18849069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peripheral nerve regeneration using a three dimensionally cultured schwann cell conduit.
    Kim SM; Lee SK; Lee JH
    J Craniofac Surg; 2007 May; 18(3):475-88. PubMed ID: 17538306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fibrin glue as a stabilization strategy in peripheral nerve repair when using porous nerve guidance conduits.
    Bhatnagar D; Bushman JS; Murthy NS; Merolli A; Kaplan HM; Kohn J
    J Mater Sci Mater Med; 2017 May; 28(5):79. PubMed ID: 28389905
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and optimization of a biodegradable porous zein conduit using microtubes as a guide for rat sciatic nerve defect repair.
    Wang GW; Yang H; Wu WF; Zhang P; Wang JY
    Biomaterials; 2017 Jul; 131():145-159. PubMed ID: 28391036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of glial growth factor and Schwann cells in a bioresorbable guidance channel on peripheral nerve regeneration.
    Bryan DJ; Holway AH; Wang KK; Silva AE; Trantolo DJ; Wise D; Summerhayes IC
    Tissue Eng; 2000 Apr; 6(2):129-38. PubMed ID: 10941208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.