These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 196640)
1. Modification of ribonucleic acid by vitamin B6. 1. Specific interaction of pyridoxal 5'-phosphate with transfer ribonucleic acid. Kopelovich L; Wolfe G Biochemistry; 1977 Aug; 16(16):3721-6. PubMed ID: 196640 [TBL] [Abstract][Full Text] [Related]
2. Specific modification of isoleucyl transfer ribonucleic acid synthetase by pyridoxal 5'-phosphate. Piszkiewicz D; Duval J; Rostas S Biochemistry; 1977 Aug; 16(16):3538-43. PubMed ID: 19052 [No Abstract] [Full Text] [Related]
3. Chemical modification in situ of Escherichia coli 30 S ribosomal proteins by the site-specific reagent pyridoxal phosphate. Inactivation of the aminoacyl-tRNA and mRNA binding sites. Ohsawa H; Gualerzi C J Biol Chem; 1983 Jan; 258(1):150-6. PubMed ID: 6336745 [TBL] [Abstract][Full Text] [Related]
4. [Interaction of amino acyl-tRNA-synthetases from the rabbit liver with RNA and polyanions]. Vol'fson AD; Motorin IuA; Tsygankov AIu; Orlovskiĭ AF; Gladilin KL Biokhimiia; 1988 May; 53(5):799-805. PubMed ID: 3167123 [TBL] [Abstract][Full Text] [Related]
5. Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs. Chinault AC; Tan KH; Hassur SM; Hecht SM Biochemistry; 1977 Feb; 16(4):766-76. PubMed ID: 319826 [TBL] [Abstract][Full Text] [Related]
6. [Phenylalanyl-tRNA synthetase from E. coli MRE-600. Effect of chemical modification of lysine residues on the enzyme interaction with substrates]. Gorshkova II; Datsiĩ II; Lavrik OI; Nevinskiĩ GA Biokhimiia; 1981 Apr; 46(4):699-707. PubMed ID: 6269660 [TBL] [Abstract][Full Text] [Related]
7. Acylation of Escherichia coli tRNAtrp with 5-methyltryptophan by E. coli tryptophanyl-tRNA ligase. Thang MN; Buckingham RH; Dondon L Biochim Biophys Acta; 1973 Jul; 312(4):685-94. PubMed ID: 4354876 [No Abstract] [Full Text] [Related]
8. Effect of sodium bisulfite modification on the arginine acceptance of E. coli tRNA Arg. Chakraburtty K Nucleic Acids Res; 1975 Oct; 2(10):1793-804. PubMed ID: 1103086 [TBL] [Abstract][Full Text] [Related]
9. On the reactivity of pyridoxal-5'-phosphate with yeast tRNAPhe and tRNATyr. Okabe N; Cramer F Z Naturforsch C Biosci; 1980; 35(5-6):522-5. PubMed ID: 6773259 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of molecular recognition of tRNAs by aminoacyl-tRNA synthetases. Nureki O; Tateno M; Niimi T; Kohno T; Muramatsu T; Kanno H; Muto Y; Giege R; Yokoyama S Nucleic Acids Symp Ser; 1991; (25):165-6. PubMed ID: 1726806 [TBL] [Abstract][Full Text] [Related]
11. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase. Old JM; Jones DS Biochem J; 1977 Aug; 165(2):367-73. PubMed ID: 336037 [TBL] [Abstract][Full Text] [Related]
12. Effects of the ionic environment on modification of yeast tyrosine transfer ribonucleic acid with N-acetoxy-2-acetylaminofluorene. Pulkrabek P; Grunberger D; Weinstein IB Biochemistry; 1974 May; 13(11):2414-9. PubMed ID: 4598626 [No Abstract] [Full Text] [Related]
13. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Study of the interactions with its substrates. Kern D; Lapointe J Biochemistry; 1979 Dec; 18(26):5809-18. PubMed ID: 229901 [TBL] [Abstract][Full Text] [Related]
14. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase. Schulman LH; Pelka H Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181 [TBL] [Abstract][Full Text] [Related]
15. An interferon-induced phosphodiesterase degrading (2'-5') oligoisoadenylate and the C-C-A terminus of tRNA. Schmidt A; Chernajovsky Y; Shulman L; Federman P; Berissi H; Revel M Proc Natl Acad Sci U S A; 1979 Oct; 76(10):4788-92. PubMed ID: 228264 [TBL] [Abstract][Full Text] [Related]
16. Involvement of the anticodon region of Escherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl-tRNA synthetase. Alteration of the 2-thiouridine derivatives located in the anticodon of the tRNAs by BrCN or sulfur deprivation. Seno T; Agris PF; Söll D Biochim Biophys Acta; 1974 May; 349(3):328-38. PubMed ID: 4366808 [No Abstract] [Full Text] [Related]
17. Evidence for defective transfer ribonucleic acid in polymyopathic hamsters and its inhibitory effect on protein synthesis. Bester AJ; Gevers W Biochem J; 1973 Feb; 132(2):203-14. PubMed ID: 4725037 [TBL] [Abstract][Full Text] [Related]
18. Recognition of E coli tRNAArg by arginyl tRNA synthetase. Chakraburtty K Nucleic Acids Res; 1980 Oct; 8(19):4459-72. PubMed ID: 6776488 [TBL] [Abstract][Full Text] [Related]
19. Modified 5'-nucleotides resistant to 5'-nucleotidase: isolation of 3-(3-amino-3-carboxypropyl) uridine 5'-phosphate and N2, N2-dimethylguanosine 5'-phosphate from snake venom hydrolysates of transfer RNA. Gray MW Can J Biochem; 1976 May; 54(5):413-22. PubMed ID: 6133 [TBL] [Abstract][Full Text] [Related]