These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 196640)

  • 21. Recognition of various arginine transfer ribonucleic acids with arginyl-tRNA synthetase purified from human placenta.
    Katon N; Saneyoshi M
    Nucleic Acids Symp Ser; 1979; (6):s119-22. PubMed ID: 547226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recognition of nonsense codons in mammalian cells.
    Hatfield D
    Proc Natl Acad Sci U S A; 1972 Oct; 69(10):3014-8. PubMed ID: 4562751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of the anticodon in the interaction between methionyl-tRNA synthetase and bacterial initiator tRNA.
    Bruton CJ; Clark BF
    Nucleic Acids Res; 1974 Feb; 1(2):217-21. PubMed ID: 4607244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recognition of pyrrolysine tRNA by the Desulfitobacterium hafniense pyrrolysyl-tRNA synthetase.
    Herring S; Ambrogelly A; Polycarpo CR; Söll D
    Nucleic Acids Res; 2007; 35(4):1270-8. PubMed ID: 17267409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase.
    Schulman LH; Pelka H; Susani M
    Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A broadly applicable continuous spectrophotometric assay for measuring aminoacyl-tRNA synthetase activity.
    Lloyd AJ; Thomann HU; Ibba M; Söll D
    Nucleic Acids Res; 1995 Aug; 23(15):2886-92. PubMed ID: 7659511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of horse muscle acylphosphatase by pyridoxal 5'-phosphate.
    Ramponi G; Manao G; Camici G; White GF
    Biochim Biophys Acta; 1975 Jun; 391(2):486-93. PubMed ID: 238607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aminoacylation of rat liver transfer RNA with L-penicillamine. On the specificity of the aminoacylation reaction.
    Lodemann E; Ulrich P; Wacker A
    Biochim Biophys Acta; 1977 Jan; 474(2):210-7. PubMed ID: 318863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aminoacylation of rat liver transfer RNA with homologous and heterologous enzyme systems during aging.
    Vinayak M
    Biochem Int; 1986 Mar; 12(3):479-84. PubMed ID: 3635385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aminoacyl-tRNA synthetase-induced cleavage of tRNA.
    Beresten S; Jahn M; Söll D
    Nucleic Acids Res; 1992 Apr; 20(7):1523-30. PubMed ID: 1579445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new mechanism of post-transfer editing by aminoacyl-tRNA synthetases: catalysis of hydrolytic reaction by bacterial-type prolyl-tRNA synthetase.
    Boyarshin KS; Priss AE; Rayevskiy AV; Ilchenko MM; Dubey IY; Kriklivyi IA; Yaremchuk AD; Tukalo MA
    J Biomol Struct Dyn; 2017 Feb; 35(3):669-682. PubMed ID: 26886480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bovine tryptophanyl-tRNA synthetase and glyceraldehyde-3-phosphate dehydrogenase form a complex.
    Filonenko VV; Beresten SF; Rubikaite BI; Kisselev LL
    Biochem Biophys Res Commun; 1989 Jun; 161(2):481-8. PubMed ID: 2735904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of the role of the acceptor stem in the interactions between tRNAs and aminoacyl-tRNA synthetases.
    Bonnet J; Befort N; Bollack C; Fasiolo F; Ebel JP
    Nucleic Acids Res; 1975 Feb; 2(2):211-21. PubMed ID: 1091915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatic binding of aminoacyl transfer ribonucleic acid to ribosomes: the study of binding sites of 2' and 3' isomers of aminoacyl transfer ribonucleic acid.
    Ringer D; Chládek S
    Biochemistry; 1976 Jun; 15(13):2759-65. PubMed ID: 181048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, and initiation factor 2 on activity in initiation.
    Mayer C; Köhrer C; Kenny E; Prusko C; RajBhandary UL
    Biochemistry; 2003 May; 42(17):4787-99. PubMed ID: 12718519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts.
    Lee CP; RajBhandary UL
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11378-82. PubMed ID: 1763051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Status of tRNA charging, trinucleotide acceptor sequence and tRNA nucleotidyltransferase activity in the human placenta.
    Baliga BS; Hubert C; Murphy A; Meadow F; Dourmashkin P; Munro H
    Can J Biochem; 1976 Jul; 54(7):609-16. PubMed ID: 182340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanism of the aminoacylation of transfer ribonucleic acid. The kinetics and stoichiometry of the lysis of aminoacyl-tRNA.
    Jakubowski H; Pastuszyn A; Loftfield RB
    Biochim Biophys Acta; 1978 Oct; 520(3):568-76. PubMed ID: 214118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Position of aminoacylation of individual Escherichia coli and yeast tRNAs.
    Hecht SM; Chinualt AC
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):405-9. PubMed ID: 1108023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.