BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19664062)

  • 1. Bipartite recognition and conformational sampling mechanisms for hydride transfer from nicotinamide coenzyme to FMN in pentaerythritol tetranitrate reductase.
    Pudney CR; Hay S; Scrutton NS
    FEBS J; 2009 Sep; 276(17):4780-9. PubMed ID: 19664062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectivity through discriminatory induced fit enables switching of NAD(P)H coenzyme specificity in Old Yellow Enzyme ene-reductases.
    Iorgu AI; Hedison TM; Hay S; Scrutton NS
    FEBS J; 2019 Aug; 286(16):3117-3128. PubMed ID: 31033202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and structural basis of reactivity of pentaerythritol tetranitrate reductase with NADPH, 2-cyclohexenone, nitroesters, and nitroaromatic explosives.
    Khan H; Harris RJ; Barna T; Craig DH; Bruce NC; Munro AW; Moody PC; Scrutton NS
    J Biol Chem; 2002 Jun; 277(24):21906-12. PubMed ID: 11923299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced Electron Transfer from a 1,4,5,6-Tetrahydro Nicotinamide Adenine Dinucleotide (Phosphate) Analogue to Oxidized Flavin in an Ene-Reductase Flavoenzyme.
    Speirs M; Hardman SJO; Iorgu AI; Johannissen LO; Heyes DJ; Scrutton NS; Sazanovich IV; Hay S
    J Phys Chem Lett; 2023 Apr; 14(13):3236-3242. PubMed ID: 36972502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H-tunneling in the multiple H-transfers of the catalytic cycle of morphinone reductase and in the reductive half-reaction of the homologous pentaerythritol tetranitrate reductase.
    Basran J; Harris RJ; Sutcliffe MJ; Scrutton NS
    J Biol Chem; 2003 Nov; 278(45):43973-82. PubMed ID: 12941965
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Iorgu AI; Baxter NJ; Cliff MJ; Waltho JP; Hay S; Scrutton NS
    Biomol NMR Assign; 2018 Apr; 12(1):79-83. PubMed ID: 29168057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C-terminal extension of bacterial flavodoxin-reductases: involvement in the hydride transfer mechanism from the coenzyme.
    Bortolotti A; Sánchez-Azqueta A; Maya CM; Velázquez-Campoy A; Hermoso JA; Medina M; Cortez N
    Biochim Biophys Acta; 2014 Jan; 1837(1):33-43. PubMed ID: 24016470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase.
    Grunau A; Paine MJ; Ladbury JE; Gutierrez A
    Biochemistry; 2006 Feb; 45(5):1421-34. PubMed ID: 16445284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loop 6 and the β-hairpin flap are structural hotspots that determine cofactor specificity in the FMN-dependent family of ene-reductases.
    Kerschbaumer B; Totaro MG; Friess M; Breinbauer R; Bijelic A; Macheroux P
    FEBS J; 2024 Apr; 291(7):1560-1574. PubMed ID: 38263933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trp-676 facilitates nicotinamide coenzyme exchange in the reductive half-reaction of human cytochrome P450 reductase: properties of the soluble W676H and W676A mutant reductases.
    Gutierrez A; Doehr O; Paine M; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2000 Dec; 39(51):15990-9. PubMed ID: 11123926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. External loops at the ferredoxin-NADP(+) reductase protein-partner binding cavity contribute to substrates allocation.
    Sánchez-Azqueta A; Martínez-Júlvez M; Hervás M; Navarro JA; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):296-305. PubMed ID: 24321506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution studies of hydride transfer in the ferredoxin:NADP
    Kean KM; Carpenter RA; Pandini V; Zanetti G; Hall AR; Faber R; Aliverti A; Karplus PA
    FEBS J; 2017 Oct; 284(19):3302-3319. PubMed ID: 28783258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H).
    Cui D; Zhang L; Jiang S; Yao Z; Gao B; Lin J; Yuan YA; Wei D
    FEBS J; 2015 Jun; 282(12):2339-51. PubMed ID: 25817922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.
    VANDEMARK PJ; SMITH PF
    J Bacteriol; 1964 Jul; 88(1):122-9. PubMed ID: 14197876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors.
    Murataliev MB; Feyereisen R
    Biochemistry; 2000 Oct; 39(41):12699-707. PubMed ID: 11027150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel pathways and free-energy landscapes for enzymatic hydride transfer probed by hydrostatic pressure.
    Pudney CR; McGrory T; Lafite P; Pang J; Hay S; Leys D; Sutcliffe MJ; Scrutton NS
    Chembiochem; 2009 May; 10(8):1379-84. PubMed ID: 19405065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 A resolution: the structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family.
    Tanaka N; Nonaka T; Nakanishi M; Deyashiki Y; Hara A; Mitsui Y
    Structure; 1996 Jan; 4(1):33-45. PubMed ID: 8805511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of pentaerythritol tetranitrate reductase: "flipped" binding geometries for steroid substrates in different redox states of the enzyme.
    Barna TM; Khan H; Bruce NC; Barsukov I; Scrutton NS; Moody PC
    J Mol Biol; 2001 Jul; 310(2):433-47. PubMed ID: 11428899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.