These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19664220)

  • 1. Does negative auto-regulation increase gene duplicability?
    Warnecke T; Wang GZ; Lercher MJ; Hurst LD
    BMC Evol Biol; 2009 Aug; 9():193. PubMed ID: 19664220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between gene duplicability and diversifiability in the topology of biochemical networks.
    Guo Z; Jiang W; Lages N; Borcherds W; Wang D
    BMC Genomics; 2014 Jul; 15(1):577. PubMed ID: 25005725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of the transcription-factor gene regulatory networks of E. coli and S. cerevisiae.
    Guzmán-Vargas L; Santillán M
    BMC Syst Biol; 2008 Jan; 2():13. PubMed ID: 18237429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convergent evolution of gene circuits.
    Conant GC; Wagner A
    Nat Genet; 2003 Jul; 34(3):264-6. PubMed ID: 12819781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression properties exhibit correlated patterns with the fate of duplicated genes, their divergence, and transcriptional plasticity in Saccharomycotina.
    Mattenberger F; Sabater-Muñoz B; Toft C; Sablok G; Fares MA
    DNA Res; 2017 Dec; 24(6):559-570. PubMed ID: 28633360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene duplicability-connectivity-complexity across organisms and a neutral evolutionary explanation.
    Zhu Y; Du P; Nakhleh L
    PLoS One; 2012; 7(9):e44491. PubMed ID: 22984517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene regulatory network growth by duplication.
    Teichmann SA; Babu MM
    Nat Genet; 2004 May; 36(5):492-6. PubMed ID: 15107850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher duplicability of less important genes in yeast genomes.
    He X; Zhang J
    Mol Biol Evol; 2006 Jan; 23(1):144-51. PubMed ID: 16151181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene complexity and gene duplicability.
    He X; Zhang J
    Curr Biol; 2005 Jun; 15(11):1016-21. PubMed ID: 15936271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene dosage and gene duplicability.
    Qian W; Zhang J
    Genetics; 2008 Aug; 179(4):2319-24. PubMed ID: 18689880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network motif-based analysis of regulatory patterns in paralogous gene pairs.
    Melkus G; Rucevskis P; Celms E; Čerāns K; Freivalds K; Kikusts P; Lace L; Opmanis M; Rituma D; Viksna J
    J Bioinform Comput Biol; 2020 Jun; 18(3):2040008. PubMed ID: 32698721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin regulation and gene centrality are essential for controlling fitness pleiotropy in yeast.
    Zhou L; Ma X; Arbeitman MN; Sun F
    PLoS One; 2009 Nov; 4(11):e8086. PubMed ID: 19956643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative evolutionary study of transcription networks. The global role of feedback and hierachical structures.
    Sellerio AL; Bassetti B; Isambert H; Cosentino Lagomarsino M
    Mol Biosyst; 2009 Feb; 5(2):170-9. PubMed ID: 19156263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative auto-regulation increases the input dynamic-range of the arabinose system of Escherichia coli.
    Madar D; Dekel E; Bren A; Alon U
    BMC Syst Biol; 2011 Jul; 5():111. PubMed ID: 21749723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of co-expression patterns in E. coli and S. cerevisiae emerging from reverse engineering algorithms.
    Zampieri M; Soranzo N; Bianchini D; Altafini C
    PLoS One; 2008 Aug; 3(8):e2981. PubMed ID: 18714358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expectations of duplicate gene retention under the gene duplicability hypothesis.
    Wilson AE; Liberles DA
    BMC Ecol Evol; 2023 Dec; 23(1):76. PubMed ID: 38097959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexity, connectivity, and duplicability as barriers to lateral gene transfer.
    Wellner A; Lurie MN; Gophna U
    Genome Biol; 2007; 8(8):R156. PubMed ID: 17678544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid reorganization of the transcriptional regulatory network after genome duplication in yeast.
    Conant GC
    Proc Biol Sci; 2010 Mar; 277(1683):869-76. PubMed ID: 19923128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of gene duplicability during the evolution of protein interaction network.
    D'Antonio M; Ciccarelli FD
    PLoS Comput Biol; 2011 Apr; 7(4):e1002029. PubMed ID: 21490719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconciling gene expression data with known genome-scale regulatory network structures.
    Herrgård MJ; Covert MW; Palsson BØ
    Genome Res; 2003 Nov; 13(11):2423-34. PubMed ID: 14559784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.