These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 19664294)
1. Cyanobacterial contribution to the genomes of the plastid-lacking protists. Maruyama S; Matsuzaki M; Misawa K; Nozaki H BMC Evol Biol; 2009 Aug; 9():197. PubMed ID: 19664294 [TBL] [Abstract][Full Text] [Related]
2. Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes. Maruyama S; Misawa K; Iseki M; Watanabe M; Nozaki H BMC Evol Biol; 2008 May; 8():151. PubMed ID: 18485228 [TBL] [Abstract][Full Text] [Related]
3. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Martin W; Rujan T; Richly E; Hansen A; Cornelsen S; Lins T; Leister D; Stoebe B; Hasegawa M; Penny D Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12246-51. PubMed ID: 12218172 [TBL] [Abstract][Full Text] [Related]
4. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943 [TBL] [Abstract][Full Text] [Related]
5. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. Becker B; Hoef-Emden K; Melkonian M BMC Evol Biol; 2008 Jul; 8():203. PubMed ID: 18627593 [TBL] [Abstract][Full Text] [Related]
6. Phylogenomic analysis of "red" genes from two divergent species of the "green" secondary phototrophs, the chlorarachniophytes, suggests multiple horizontal gene transfers from the red lineage before the divergence of extant chlorarachniophytes. Yang Y; Matsuzaki M; Takahashi F; Qu L; Nozaki H PLoS One; 2014; 9(6):e101158. PubMed ID: 24972019 [TBL] [Abstract][Full Text] [Related]
8. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements. Richards TA; Dacks JB; Campbell SA; Blanchard JL; Foster PG; McLeod R; Roberts CW Eukaryot Cell; 2006 Sep; 5(9):1517-31. PubMed ID: 16963634 [TBL] [Abstract][Full Text] [Related]
9. Genomes of Stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Dagan T; Roettger M; Stucken K; Landan G; Koch R; Major P; Gould SB; Goremykin VV; Rippka R; Tandeau de Marsac N; Gugger M; Lockhart PJ; Allen JF; Brune I; Maus I; Pühler A; Martin WF Genome Biol Evol; 2013; 5(1):31-44. PubMed ID: 23221676 [TBL] [Abstract][Full Text] [Related]
10. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? Stiller JW; Huang J; Ding Q; Tian J; Goodwillie C BMC Genomics; 2009 Oct; 10():484. PubMed ID: 19843329 [TBL] [Abstract][Full Text] [Related]
11. EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata. Kim E; Graham LE PLoS One; 2008 Jul; 3(7):e2621. PubMed ID: 18612431 [TBL] [Abstract][Full Text] [Related]
12. Evidence of a chimeric genome in the cyanobacterial ancestor of plastids. Gross J; Meurer J; Bhattacharya D BMC Evol Biol; 2008 Apr; 8():117. PubMed ID: 18433492 [TBL] [Abstract][Full Text] [Related]
13. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Reyes-Prieto A; Hackett JD; Soares MB; Bonaldo MF; Bhattacharya D Curr Biol; 2006 Dec; 16(23):2320-5. PubMed ID: 17141613 [TBL] [Abstract][Full Text] [Related]
14. Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Schön ME; Zlatogursky VV; Singh RP; Poirier C; Wilken S; Mathur V; Strassert JFH; Pinhassi J; Worden AZ; Keeling PJ; Ettema TJG; Wideman JG; Burki F Nat Commun; 2021 Nov; 12(1):6651. PubMed ID: 34789758 [TBL] [Abstract][Full Text] [Related]
15. Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes. Reyes-Prieto A; Moustafa A Sci Rep; 2012; 2():955. PubMed ID: 23233874 [TBL] [Abstract][Full Text] [Related]
16. Cyanobacterial genes transmitted to the nucleus before divergence of red algae in the Chromista. Nozaki H; Matsuzaki M; Misumi O; Kuroiwa H; Hasegawa M; Higashiyama T; Shin-I T; Kohara Y; Ogasawara N; Kuroiwa T J Mol Evol; 2004 Jul; 59(1):103-13. PubMed ID: 15383913 [TBL] [Abstract][Full Text] [Related]
17. PhyloSort: a user-friendly phylogenetic sorting tool and its application to estimating the cyanobacterial contribution to the nuclear genome of Chlamydomonas. Moustafa A; Bhattacharya D BMC Evol Biol; 2008 Jan; 8():6. PubMed ID: 18194581 [TBL] [Abstract][Full Text] [Related]
18. Lateral gene transfer of a multigene region from cyanobacteria to dinoflagellates resulting in a novel plastid-targeted fusion protein. Waller RF; Slamovits CH; Keeling PJ Mol Biol Evol; 2006 Jul; 23(7):1437-43. PubMed ID: 16675503 [TBL] [Abstract][Full Text] [Related]
19. Phylogenetic analyses of plastid-originated proteins imply universal endosymbiosis in ancestors of animals and fungi. Yuan S; Guo JH; Du JB; Lin HH Z Naturforsch C J Biosci; 2008; 63(11-12):903-8. PubMed ID: 19227843 [TBL] [Abstract][Full Text] [Related]
20. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids. Cenci U; Sibbald SJ; Curtis BA; Kamikawa R; Eme L; Moog D; Henrissat B; Maréchal E; Chabi M; Djemiel C; Roger AJ; Kim E; Archibald JM BMC Biol; 2018 Nov; 16(1):137. PubMed ID: 30482201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]