These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 19664462)
1. Quantitative structure-lambda(max) relationship study on flavones by heuristic method and radial basis function neural network. Liu H; Wen Y; Luan F; Gao Y; Li X Anal Chim Acta; 2009 Sep; 649(1):52-61. PubMed ID: 19664462 [TBL] [Abstract][Full Text] [Related]
2. Quantitative structure-property relationship study for estimation of quantitative calibration factors of some organic compounds in gas chromatography. Luan F; Liu HT; Wen Y; Zhang X Anal Chim Acta; 2008 Apr; 612(2):126-35. PubMed ID: 18358857 [TBL] [Abstract][Full Text] [Related]
3. Prediction of the maximum absorption wavelength of azobenzene dyes by QSPR tools. Xu X; Luan F; Liu H; Cheng J; Zhang X Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):353-61. PubMed ID: 21930420 [TBL] [Abstract][Full Text] [Related]
4. Accurate quantitative structure-property relationship model of mobilities of peptides in capillary zone electrophoresis. Ma W; Luan F; Zhang H; Zhang X; Liu M; Hu Z; Fan B Analyst; 2006 Nov; 131(11):1254-60. PubMed ID: 17066195 [TBL] [Abstract][Full Text] [Related]
5. Development of migration models for acids in capillary electrophoresis using heuristic and radial basis function neural network methods. Xue C; Yao X; Liu H; Liu M; Hu Z; Fan B Electrophoresis; 2005 Jun; 26(11):2154-64. PubMed ID: 15852353 [TBL] [Abstract][Full Text] [Related]
6. Prediction of quantitative calibration factors of some organic compounds in gas chromatography. Luan F; Liu HT; Wen Y; Zhang X Analyst; 2008 Jul; 133(7):881-7. PubMed ID: 18575640 [TBL] [Abstract][Full Text] [Related]
7. Quantitative structure-retention relationships for organic pollutants in biopartitioning micellar chromatography. Xia B; Ma W; Zhang X; Fan B Anal Chim Acta; 2007 Aug; 598(1):12-8. PubMed ID: 17693301 [TBL] [Abstract][Full Text] [Related]
8. Quantitative structure-activity relationship studies of a series of non-benzodiazepine structural ligands binding to benzodiazepine receptor. Xia B; Ma W; Zheng B; Zhang X; Fan B Eur J Med Chem; 2008 Jul; 43(7):1489-98. PubMed ID: 17964693 [TBL] [Abstract][Full Text] [Related]
9. Quantitative structure-activity relationship models for prediction of sensory irritants (logRD50) of volatile organic chemicals. Luan F; Ma W; Zhang X; Zhang H; Liu M; Hu Z; Fan BT Chemosphere; 2006 May; 63(7):1142-53. PubMed ID: 16307788 [TBL] [Abstract][Full Text] [Related]
10. Prediction of hydrophile-lipophile balance values of anionic surfactants using a quantitative structure-property relationship. Luan F; Liu H; Gao Y; Li Q; Zhang X; Guo Y J Colloid Interface Sci; 2009 Aug; 336(2):773-9. PubMed ID: 19439317 [TBL] [Abstract][Full Text] [Related]
11. Prediction of pK(a) for neutral and basic drugs based on radial basis function Neural networks and the heuristic method. Luan F; Ma W; Zhang H; Zhang X; Liu M; Hu Z; Fan B Pharm Res; 2005 Sep; 22(9):1454-60. PubMed ID: 16132357 [TBL] [Abstract][Full Text] [Related]
12. Prediction of retention times for a large set of pesticides or toxicants based on support vector machine and the heuristic method. Li X; Luan F; Si H; Hu Z; Liu M Toxicol Lett; 2007 Dec; 175(1-3):136-44. PubMed ID: 18024009 [TBL] [Abstract][Full Text] [Related]
13. Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores. Tetko IV; Solov'ev VP; Antonov AV; Yao X; Doucet JP; Fan B; Hoonakker F; Fourches D; Jost P; Lachiche N; Varnek A J Chem Inf Model; 2006; 46(2):808-19. PubMed ID: 16563012 [TBL] [Abstract][Full Text] [Related]
14. Quantitative predictions of gas chromatography retention indexes with support vector machines, radial basis neural networks and multiple linear regression. Chen HF Anal Chim Acta; 2008 Feb; 609(1):24-36. PubMed ID: 18243870 [TBL] [Abstract][Full Text] [Related]
15. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks. Nandi S; Vracko M; Bagchi MC Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360 [TBL] [Abstract][Full Text] [Related]
16. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. Yao XJ; Panaye A; Doucet JP; Zhang RS; Chen HF; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(4):1257-66. PubMed ID: 15272833 [TBL] [Abstract][Full Text] [Related]
17. QSPR model of Henry's law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach. Modarresi H; Modarress H; Dearden JC Chemosphere; 2007 Feb; 66(11):2067-76. PubMed ID: 17113627 [TBL] [Abstract][Full Text] [Related]
18. The accurate QSPR models to predict the bioconcentration factors of nonionic organic compounds based on the heuristic method and support vector machine. Liu H; Yao X; Zhang R; Liu M; Hu Z; Fan B Chemosphere; 2006 May; 63(5):722-33. PubMed ID: 16226786 [TBL] [Abstract][Full Text] [Related]
19. Rapid toxicity prediction of organic chemicals to Chlorella vulgaris using quantitative structure-activity relationships methods. Xia B; Liu K; Gong Z; Zheng B; Zhang X; Fan B Ecotoxicol Environ Saf; 2009 Mar; 72(3):787-94. PubMed ID: 18950860 [TBL] [Abstract][Full Text] [Related]
20. QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine. Xue CX; Zhang RS; Liu HX; Yao XJ; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(5):1693-700. PubMed ID: 15446828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]