BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 19664694)

  • 41. Evolutionary analysis of glycosyl hydrolase family 28 (GH28) suggests lineage-specific expansions in necrotrophic fungal pathogens.
    Sprockett DD; Piontkivska H; Blackwood CB
    Gene; 2011 Jun; 479(1-2):29-36. PubMed ID: 21354463
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiple lineage specific expansions within the guanylyl cyclase gene family.
    Fitzpatrick DA; O'Halloran DM; Burnell AM
    BMC Evol Biol; 2006 Mar; 6():26. PubMed ID: 16549024
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapid expansion of killer cell immunoglobulin-like receptor genes in primates and their coevolution with MHC Class I genes.
    Hao L; Nei M
    Gene; 2005 Mar; 347(2):149-59. PubMed ID: 15733532
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular evolution of cytochrome c oxidase subunit IV: evidence for positive selection in simian primates.
    Wu W; Goodman M; Lomax MI; Grossman LI
    J Mol Evol; 1997 May; 44(5):477-91. PubMed ID: 9115172
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolution and Diversity of Pre-mRNA Splicing in Highly Reduced Nucleomorph Genomes.
    Wong DK; Grisdale CJ; Fast NM
    Genome Biol Evol; 2018 Jun; 10(6):1573-1583. PubMed ID: 29860351
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A molecular view of primate phylogeny and important systematic and evolutionary questions.
    Koop BF; Tagle DA; Goodman M; Slightom JL
    Mol Biol Evol; 1989 Nov; 6(6):580-612. PubMed ID: 2488474
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of the primate TRIM gene family reveals the recent evolution in primates.
    Qiu S; Liu H; Jian Z; Fan Z; Liu S; Xing J; Li J
    Mol Genet Genomics; 2020 Sep; 295(5):1281-1294. PubMed ID: 32564135
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular history of gene conversions in the primate fetal gamma-globin genes. Nucleotide sequences from the common gibbon, Hylobates lar.
    Fitch DH; Mainone C; Goodman M; Slightom JL
    J Biol Chem; 1990 Jan; 265(2):781-93. PubMed ID: 2295619
    [TBL] [Abstract][Full Text] [Related]  

  • 49. What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor?
    Michelle C; Vourc'h P; Mignon L; Andres CR
    J Mol Evol; 2009 Jun; 68(6):616-28. PubMed ID: 19452197
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function.
    Lane CE; van den Heuvel K; Kozera C; Curtis BA; Parsons BJ; Bowman S; Archibald JM
    Proc Natl Acad Sci U S A; 2007 Dec; 104(50):19908-13. PubMed ID: 18077423
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genomic and Transcriptomic Analysis Reveals Spliced Leader Trans-Splicing in Cryptomonads.
    Roy SW
    Genome Biol Evol; 2017 Mar; 9(3):468-473. PubMed ID: 28391323
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nucleomorph genome sequence of the cryptophyte alga Chroomonas mesostigmatica CCMP1168 reveals lineage-specific gene loss and genome complexity.
    Moore CE; Curtis B; Mills T; Tanifuji G; Archibald JM
    Genome Biol Evol; 2012; 4(11):1162-75. PubMed ID: 23042551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Involvement of Ubiquitin-Conjugating Enzyme (E2 Gene Family) in Ripening Process and Response to Cold and Heat Stress of Vitis vinifera.
    Gao Y; Wang Y; Xin H; Li S; Liang Z
    Sci Rep; 2017 Oct; 7(1):13290. PubMed ID: 29038452
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Segmental duplications and evolutionary acquisition of UV damage response in the SPATA31 gene family of primates and humans.
    Bekpen C; Künzel S; Xie C; Eaaswarkhanth M; Lin YL; Gokcumen O; Akdis CA; Tautz D
    BMC Genomics; 2017 Mar; 18(1):222. PubMed ID: 28264649
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular evolution of the CYP2D subfamily in primates: purifying selection on substrate recognition sites without the frequent or long-tract gene conversion.
    Yasukochi Y; Satta Y
    Genome Biol Evol; 2015 Mar; 7(4):1053-67. PubMed ID: 25808902
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gain of new exons and promoters by lineage-specific transposable elements-integration and conservation event on CHRM3 gene.
    Huh JW; Kim YH; Lee SR; Kim H; Kim DS; Kim HS; Kang HS; Chang KT
    Mol Cells; 2009 Aug; 28(2):111-7. PubMed ID: 19669628
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diversity of secondary endosymbiont-derived actin-coding genes in cryptomonads and their evolutionary implications.
    Tanifuji G; Erata M; Ishida K; Onodera N; Hara Y
    J Plant Res; 2006 May; 119(3):205-15. PubMed ID: 16570126
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of chloroplast and nucleomorph replication by the cell cycle in the cryptophyte Guillardia theta.
    Onuma R; Mishra N; Miyagishima SY
    Sci Rep; 2017 May; 7(1):2345. PubMed ID: 28539635
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolution of general transcription factors.
    Gunbin KV; Ruvinsky A
    J Mol Evol; 2013 Feb; 76(1-2):28-47. PubMed ID: 23229069
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Origin of alternative splicing by tandem exon duplication.
    Kondrashov FA; Koonin EV
    Hum Mol Genet; 2001 Nov; 10(23):2661-9. PubMed ID: 11726553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.