These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 19664818)

  • 1. Antibiofilm activity of nanosized magnesium fluoride.
    Lellouche J; Kahana E; Elias S; Gedanken A; Banin E
    Biomaterials; 2009 Oct; 30(30):5969-78. PubMed ID: 19664818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles.
    Lellouche J; Friedman A; Lahmi R; Gedanken A; Banin E
    Int J Nanomedicine; 2012; 7():1175-88. PubMed ID: 22419866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved antibacterial and antibiofilm activity of magnesium fluoride nanoparticles obtained by water-based ultrasound chemistry.
    Lellouche J; Friedman A; Lellouche JP; Gedanken A; Banin E
    Nanomedicine; 2012 Jul; 8(5):702-11. PubMed ID: 21945899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles.
    Lellouche J; Friedman A; Gedanken A; Banin E
    Int J Nanomedicine; 2012; 7():5611-24. PubMed ID: 23152681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of antibiofilm activity of magnesium fluoride nanoparticles-stabilized oil-in-water nanosized emulsion.
    Shunmugaperumal T; Ramamurthy S
    Drug Dev Ind Pharm; 2012 Mar; ():. PubMed ID: 22409156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial coating agents: can biofilm formation on a breast implant be prevented?
    van Heerden J; Turner M; Hoffmann D; Moolman J
    J Plast Reconstr Aesthet Surg; 2009 May; 62(5):610-7. PubMed ID: 18359675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface antibacterial characteristics of plasma-modified polyethylene.
    Zhang W; Chu PK; Ji J; Zhang Y; Ng SC; Yan Q
    Biopolymers; 2006 Sep; 83(1):62-8. PubMed ID: 16639708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of bioinorganic antimicrobial peptide nanoparticles with potential therapeutic properties.
    Eby DM; Farrington KE; Johnson GR
    Biomacromolecules; 2008 Sep; 9(9):2487-94. PubMed ID: 18661941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro antibiofilm and anti-adhesion effects of magnesium oxide nanoparticles against antibiotic resistant bacteria.
    Hayat S; Muzammil S; Rasool MH; Nisar Z; Hussain SZ; Sabri AN; Jamil S
    Microbiol Immunol; 2018 Apr; 62(4):211-220. PubMed ID: 29405384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial adhesion inhibition of the quaternary ammonium functionalized silica nanoparticles.
    Song J; Kong H; Jang J
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):651-6. PubMed ID: 21115282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model.
    Eshed M; Lellouche J; Matalon S; Gedanken A; Banin E
    Langmuir; 2012 Aug; 28(33):12288-95. PubMed ID: 22830392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial and antibiofilm efficacy of triclosan and DispersinB combination.
    Darouiche RO; Mansouri MD; Gawande PV; Madhyastha S
    J Antimicrob Chemother; 2009 Jul; 64(1):88-93. PubMed ID: 19447791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA.
    Giannousi K; Lafazanis K; Arvanitidis J; Pantazaki A; Dendrinou-Samara C
    J Inorg Biochem; 2014 Apr; 133():24-32. PubMed ID: 24441110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative effectiveness of NiCl2, Ni- and NiO-NPs in controlling oral bacterial growth and biofilm formation on oral surfaces.
    Khan ST; Ahamed M; Alhadlaq HA; Musarrat J; Al-Khedhairy A
    Arch Oral Biol; 2013 Dec; 58(12):1804-11. PubMed ID: 24200307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel bactericidal surface: Catechin-loaded surface-erodible polymer prevents biofilm formation.
    Maeyama R; Kwon IK; Mizunoe Y; Anderson JM; Tanaka M; Matsuda T
    J Biomed Mater Res A; 2005 Oct; 75(1):146-55. PubMed ID: 16028232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay.
    Su HL; Chou CC; Hung DJ; Lin SH; Pao IC; Lin JH; Huang FL; Dong RX; Lin JJ
    Biomaterials; 2009 Oct; 30(30):5979-87. PubMed ID: 19656561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.
    Birla SS; Tiwari VV; Gade AK; Ingle AP; Yadav AP; Rai MK
    Lett Appl Microbiol; 2009 Feb; 48(2):173-9. PubMed ID: 19141039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity.
    Travan A; Pelillo C; Donati I; Marsich E; Benincasa M; Scarpa T; Semeraro S; Turco G; Gennaro R; Paoletti S
    Biomacromolecules; 2009 Jun; 10(6):1429-35. PubMed ID: 19405545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of nanocomposite surface coating on biofilm formation in situ.
    Hannig M; Kriener L; Hoth-Hannig W; Becker-Willinger C; Schmidt H
    J Nanosci Nanotechnol; 2007 Dec; 7(12):4642-8. PubMed ID: 18283856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Furanones as potential anti-bacterial coatings on biomaterials.
    Baveja JK; Willcox MD; Hume EB; Kumar N; Odell R; Poole-Warren LA
    Biomaterials; 2004 Sep; 25(20):5003-12. PubMed ID: 15109862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.