These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
625 related articles for article (PubMed ID: 19665034)
1. Comparing different ODE modelling approaches for gene regulatory networks. Polynikis A; Hogan SJ; di Bernardo M J Theor Biol; 2009 Dec; 261(4):511-30. PubMed ID: 19665034 [TBL] [Abstract][Full Text] [Related]
2. Temporal constraints of a gene regulatory network: Refining a qualitative simulation. Ahmad J; Bourdon J; Eveillard D; Fromentin J; Roux O; Sinoquet C Biosystems; 2009 Dec; 98(3):149-59. PubMed ID: 19446002 [TBL] [Abstract][Full Text] [Related]
3. Stochastic cooperativity in non-linear dynamics of genetic regulatory networks. Rosenfeld S Math Biosci; 2007 Nov; 210(1):121-42. PubMed ID: 17617426 [TBL] [Abstract][Full Text] [Related]
4. Qualitative simulation of genetic regulatory networks using piecewise-linear models. De Jong H; Gouzé JL; Hernandez C; Page M; Sari T; Geiselmann J Bull Math Biol; 2004 Mar; 66(2):301-40. PubMed ID: 14871568 [TBL] [Abstract][Full Text] [Related]
5. Evolving complex dynamics in electronic models of genetic networks. Mason J; Linsay PS; Collins JJ; Glass L Chaos; 2004 Sep; 14(3):707-15. PubMed ID: 15446982 [TBL] [Abstract][Full Text] [Related]
6. Deconstructing the core dynamics from a complex time-lagged regulatory biological circuit. Eriksson O; Brinne B; Zhou Y; Björkegren J; Tegnér J IET Syst Biol; 2009 Mar; 3(2):113-29. PubMed ID: 19292565 [TBL] [Abstract][Full Text] [Related]
7. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry]. Pezard L; Nandrino JL Encephale; 2001; 27(3):260-8. PubMed ID: 11488256 [TBL] [Abstract][Full Text] [Related]
8. Analysis of a minimal model for p53 oscillations. Bottani S; Grammaticos B J Theor Biol; 2007 Nov; 249(2):235-45. PubMed ID: 17850824 [TBL] [Abstract][Full Text] [Related]
9. Global stability analysis and robust design of multi-time-scale biological networks under parametric uncertainties. Meyer-Baese A; Koshkouei AJ; Emmett MR; Goodall DP Neural Netw; 2009; 22(5-6):658-63. PubMed ID: 19632813 [TBL] [Abstract][Full Text] [Related]
10. Genetic oscillation deduced from Hopf bifurcation in a genetic regulatory network with delays. Xiao M; Cao J Math Biosci; 2008 Sep; 215(1):55-63. PubMed ID: 18585740 [TBL] [Abstract][Full Text] [Related]
11. A multi-objective differential evolutionary approach toward more stable gene regulatory networks. Esmaeili A; Jacob C Biosystems; 2009 Dec; 98(3):127-36. PubMed ID: 19853016 [TBL] [Abstract][Full Text] [Related]
12. Simulation of genetic networks modelled by piecewise deterministic Markov processes. Zeiser S; Franz U; Wittich O; Liebscher V IET Syst Biol; 2008 May; 2(3):113-35. PubMed ID: 18537453 [TBL] [Abstract][Full Text] [Related]
13. Analysis of gene regulatory network models with graded and binary transcriptional responses. Veflingstad SR; Plahte E Biosystems; 2007; 90(2):323-39. PubMed ID: 17118528 [TBL] [Abstract][Full Text] [Related]
14. Robust filtering for stochastic genetic regulatory networks with time-varying delay. Wei G; Wang Z; Lam J; Fraser K; Rao GP; Liu X Math Biosci; 2009 Aug; 220(2):73-80. PubMed ID: 19393668 [TBL] [Abstract][Full Text] [Related]
15. Comparing Boolean and piecewise affine differential models for genetic networks. Chaves M; Tournier L; Gouzé JL Acta Biotheor; 2010 Sep; 58(2-3):217-32. PubMed ID: 20665073 [TBL] [Abstract][Full Text] [Related]
16. Periodic solutions of piecewise affine gene network models with non uniform decay rates: the case of a negative feedback loop. Farcot E; Gouzé JL Acta Biotheor; 2009 Dec; 57(4):429-55. PubMed ID: 19838808 [TBL] [Abstract][Full Text] [Related]
17. Preservation of dynamic properties in qualitative modeling frameworks for gene regulatory networks. Jamshidi S; Siebert H; Bockmayr A Biosystems; 2013 May; 112(2):171-9. PubMed ID: 23499821 [TBL] [Abstract][Full Text] [Related]
19. Designer gene networks: Towards fundamental cellular control. Hasty J; Isaacs F; Dolnik M; McMillen D; Collins JJ Chaos; 2001 Mar; 11(1):207-220. PubMed ID: 12779454 [TBL] [Abstract][Full Text] [Related]
20. On the estimation of robustness and filtering ability of dynamic biochemical networks under process delays, internal parametric perturbations and external disturbances. Chen BS; Chen PW Math Biosci; 2009 Dec; 222(2):92-108. PubMed ID: 19788895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]