BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1034 related articles for article (PubMed ID: 19665136)

  • 1. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.
    Lowe A; Harrison W; El-Aklouk E; Ruygrok P; Al-Jumaily AM
    J Biomech; 2009 Sep; 42(13):2111-5. PubMed ID: 19665136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical validation of a new method to assess aortic pulse wave velocity from a single recording of a brachial artery waveform with an occluding cuff.
    Trachet B; Reymond P; Kips J; Swillens A; De Buyzere M; Suys B; Stergiopulos N; Segers P
    Ann Biomed Eng; 2010 Mar; 38(3):876-88. PubMed ID: 20127171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive determination of instantaneous brachial blood flow using the oscillometric method.
    Liu SH; Wang JJ; Cheng DC
    Biomed Tech (Berl); 2009 Aug; 54(4):171-7. PubMed ID: 19807282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The noninvasive estimation of central aortic blood pressure in patients with aortic stenosis.
    Rajani R; Chowienczyk P; Redwood S; Guilcher A; Chambers JB
    J Hypertens; 2008 Dec; 26(12):2381-8. PubMed ID: 19008716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of non-invasive calibration of radial waveforms on error in transfer-function-derived central aortic waveform characteristics.
    Hope SA; Meredith IT; Cameron JD
    Clin Sci (Lond); 2004 Aug; 107(2):205-11. PubMed ID: 15139848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a novel method to determine non-invasively the rate of central aortic pressure changes.
    Gorenberg M; Marmor A
    J Med Eng Technol; 2008; 32(4):257-62. PubMed ID: 18666005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the aortic pressure waveform and beat-to-beat relative cardiac output changes from multiple peripheral artery pressure waveforms.
    Swamy G; Mukkamala R
    IEEE Trans Biomed Eng; 2008 May; 55(5):1521-9. PubMed ID: 18440898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse wave velocity and digital volume pulse as indirect estimators of blood pressure: pilot study on healthy volunteers.
    Padilla JM; Berjano EJ; Sáiz J; Rodriguez R; Fácila L
    Cardiovasc Eng; 2009 Sep; 9(3):104-12. PubMed ID: 19657733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of confounding factors on blood pressure estimation using pulse arrival time.
    Kim JS; Kim KK; Baek HJ; Park KS
    Physiol Meas; 2008 May; 29(5):615-24. PubMed ID: 18460767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of diameter distension waveforms as an alternative for tonometric pressure to assess carotid blood pressure.
    Kips J; Vanmolkot F; Mahieu D; Vermeersch S; Fabry I; de Hoon J; Van Bortel L; Segers P
    Physiol Meas; 2010 Apr; 31(4):543-53. PubMed ID: 20208093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of central aortic pressure by SphygmoCor requires intra-arterial peripheral pressures.
    Cloud GC; Rajkumar C; Kooner J; Cooke J; Bulpitt CJ
    Clin Sci (Lond); 2003 Aug; 105(2):219-25. PubMed ID: 12710885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparison between brachial blood pressures obtained by aneroid sphygmomanometer and central aortic pressures: factors affecting the measurements].
    Kayrak M; Ulgen MS; Yazici M; Demir K; Doğan Y; Koç F; Zengin K; Ari H
    Turk Kardiyol Dern Ars; 2008 Jun; 36(4):239-46. PubMed ID: 18765967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of pulse transit time using two diametric blood pressure waveform measurements.
    Hahn JO; Reisner AT; Asada HH
    Med Eng Phys; 2010 Sep; 32(7):753-9. PubMed ID: 20537933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new noninvasive device for measuring central ejection dP/dt mathematical foundation of cardiac dP/dt measurement using a model for a collapsible artery.
    Gorenberg M; Rotztein H; Marmor A
    Cardiovasc Eng; 2009 Mar; 9(1):27-31. PubMed ID: 19259812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: a half year study on normotensive subjects.
    Wong MY; Poon CC; Zhang YT
    Cardiovasc Eng; 2009 Mar; 9(1):32-8. PubMed ID: 19381806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of central aortic pulse pressure: noninvasive brachial cuff-based estimation by a transfer function vs. a novel pulse wave analysis method.
    Cheng HM; Sung SH; Shih YT; Chuang SY; Yu WC; Chen CH
    Am J Hypertens; 2012 Nov; 25(11):1162-9. PubMed ID: 22874891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coefficient-free blood pressure estimation based on pulse transit time-cuff pressure dependence.
    Forouzanfar M; Ahmad S; Batkin I; Dajani HR; Groza VZ; Bolic M
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1814-24. PubMed ID: 23372068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of pressure wave reflection: getting the timing right!
    Segers P; Rietzschel ER; De Buyzere ML; De Bacquer D; Van Bortel LM; De Backer G; Gillebert TC; Verdonck PR
    Physiol Meas; 2007 Sep; 28(9):1045-56. PubMed ID: 17827652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between radial and central arterial pulse wave and evaluation of central aortic pressure using the radial arterial pulse wave.
    Takazawa K; Kobayashi H; Shindo N; Tanaka N; Yamashina A
    Hypertens Res; 2007 Mar; 30(3):219-28. PubMed ID: 17510503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulse wave analysis on fingertip arterial pressure: effects of age, gender and stressors on reflected waves and their relation to brachial and femoral artery blood flow.
    Ahlund C; Pettersson K; Lind L
    Clin Physiol Funct Imaging; 2008 Mar; 28(2):86-95. PubMed ID: 18034848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.