These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 19665153)
1. Characterization of glycolytic initial metabolites and enzyme activities in developing sunflower (Helianthus annuus L.) seeds. Troncoso-Ponce MA; Kruger NJ; Ratcliffe G; Garcés R; Martínez-Force E Phytochemistry; 2009 Jun; 70(9):1117-1122. PubMed ID: 19665153 [TBL] [Abstract][Full Text] [Related]
2. Glycolytic enzymatic activities in developing seeds involved in the differences between standard and low oil content sunflowers (Helianthus annuus L.). Troncoso-Ponce MA; Garcés R; Martínez-Force E Plant Physiol Biochem; 2010 Dec; 48(12):961-5. PubMed ID: 20951055 [TBL] [Abstract][Full Text] [Related]
3. Molecular and biochemical characterization of the sunflower (Helianthus annuus L.) cytosolic and plastidial enolases in relation to seed development. Troncoso-Ponce MA; Rivoal J; Dorion S; Sánchez R; Venegas-Calerón M; Moreno-Pérez AJ; Baud S; Garcés R; Martínez-Force E Plant Sci; 2018 Jul; 272():117-130. PubMed ID: 29807582 [TBL] [Abstract][Full Text] [Related]
4. Cloning, biochemical characterisation, tissue localisation and possible post-translational regulatory mechanism of the cytosolic phosphoglucose isomerase from developing sunflower seeds. Troncoso-Ponce MA; Rivoal J; Cejudo FJ; Dorion S; Garcés R; Martínez-Force E Planta; 2010 Sep; 232(4):845-59. PubMed ID: 20628759 [TBL] [Abstract][Full Text] [Related]
5. The sources of carbon and reducing power for fatty acid synthesis in the heterotrophic plastids of developing sunflower (Helianthus annuus L.) embryos. Pleite R; Pike MJ; Garcés R; Martínez-Force E; Rawsthorne S J Exp Bot; 2005 May; 56(415):1297-303. PubMed ID: 15767323 [TBL] [Abstract][Full Text] [Related]
6. Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape. Vigeolas H; Möhlmann T; Martini N; Neuhaus HE; Geigenberger P Plant Physiol; 2004 Sep; 136(1):2676-86. PubMed ID: 15333758 [TBL] [Abstract][Full Text] [Related]
7. Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds. Martínez-Force E; Cantisán S; Serrano-Vega MJ; Garcés R Planta; 2000 Oct; 211(5):673-8. PubMed ID: 11089680 [TBL] [Abstract][Full Text] [Related]
8. Sunflower (Helianthus annuus) long-chain acyl-coenzyme A synthetases expressed at high levels in developing seeds. Aznar-Moreno JA; Venegas Calerón M; Martínez-Force E; Garcés R; Mullen R; Gidda SK; Salas JJ Physiol Plant; 2014 Mar; 150(3):363-73. PubMed ID: 24102504 [TBL] [Abstract][Full Text] [Related]
9. Cloning, biochemical characterization and expression of a sunflower (Helianthus annuus L.) hexokinase associated with seed storage compounds accumulation. Troncoso-Ponce MA; Rivoal J; Dorion S; Moisan MC; Garcés R; Martínez-Force E J Plant Physiol; 2011 Mar; 168(4):299-308. PubMed ID: 20889232 [TBL] [Abstract][Full Text] [Related]
10. Inhibitors of fatty acid biosynthesis in sunflower seeds. Pleite R; Martínez-Force E; Garcés R J Plant Physiol; 2006 Sep; 163(9):885-94. PubMed ID: 16500723 [TBL] [Abstract][Full Text] [Related]
11. Enzymes of glycolytic and pentose phosphate pathways in cytosolic and leucoplastic fractions of developing seeds of Brassica campestris. Gupta R; Singh R Indian J Biochem Biophys; 1997 Jun; 34(3):288-95. PubMed ID: 9425748 [TBL] [Abstract][Full Text] [Related]
12. Temperature-related non-homogeneous fatty acid desaturation in sunflower (Helianthus annuus L.) seeds. Fernández-Moya V; Martínez-Force E; Garcés R Planta; 2003 Mar; 216(5):834-40. PubMed ID: 12624771 [TBL] [Abstract][Full Text] [Related]
13. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities. Aznar-Moreno JA; Venegas-Calerón M; Martínez-Force E; Garcés R; Salas JJ Planta; 2016 Aug; 244(2):479-90. PubMed ID: 27095109 [TBL] [Abstract][Full Text] [Related]
14. Fatty acid synthesis by isolated leucoplasts from developing Brassica seeds: role of glycolytic intermediates as the source of carbon and energy. Gupta R; Singh R Indian J Biochem Biophys; 1996 Dec; 33(6):478-83. PubMed ID: 9219433 [TBL] [Abstract][Full Text] [Related]
15. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Andre C; Froehlich JE; Moll MR; Benning C Plant Cell; 2007 Jun; 19(6):2006-22. PubMed ID: 17557808 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Multilevel Analysis of Central Metabolism in Developing Oilseeds of Oilseed Rape during in Vitro Culture. Schwender J; Hebbelmann I; Heinzel N; Hildebrandt T; Rogers A; Naik D; Klapperstück M; Braun HP; Schreiber F; Denolf P; Borisjuk L; Rolletschek H Plant Physiol; 2015 Jul; 168(3):828-48. PubMed ID: 25944824 [TBL] [Abstract][Full Text] [Related]
17. Changes in acyl-coenzyme A pools in sunflower seeds with modified fatty acid composition. Aznar-Moreno JA; Martínez-Force E; Venegas-Calerón M; Garcés R; Salas JJ Phytochemistry; 2013 Mar; 87():39-50. PubMed ID: 23280039 [TBL] [Abstract][Full Text] [Related]
18. Glutathione redox state, tocochromanols, fatty acids, antioxidant enzymes and protein carbonylation in sunflower seed embryos associated with after-ripening and ageing. Morscher F; Kranner I; Arc E; Bailly C; Roach T Ann Bot; 2015 Sep; 116(4):669-78. PubMed ID: 26346716 [TBL] [Abstract][Full Text] [Related]
19. Ontogenic changes in enzymes of carbon metabolism in relation to carbohydrate status in developing mungbean reproductive structures. Chopra J; Kaur N; Gupta AK Phytochemistry; 2000 Mar; 53(5):539-48. PubMed ID: 10724178 [TBL] [Abstract][Full Text] [Related]
20. Plastidial glycolysis in developing Arabidopsis embryos. Andriotis VM; Kruger NJ; Pike MJ; Smith AM New Phytol; 2010 Feb; 185(3):649-62. PubMed ID: 20002588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]