These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19665153)

  • 41. Seed development and differentiation: a role for metabolic regulation.
    Borisjuk L; Rolletschek H; Radchuk R; Weschke W; Wobus U; Weber H
    Plant Biol (Stuttg); 2004 Jul; 6(4):375-86. PubMed ID: 15248120
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combined transcript, proteome, and metabolite analysis of transgenic maize seeds engineered for enhanced carotenoid synthesis reveals pleotropic effects in core metabolism.
    Decourcelle M; Perez-Fons L; Baulande S; Steiger S; Couvelard L; Hem S; Zhu C; Capell T; Christou P; Fraser P; Sandmann G
    J Exp Bot; 2015 Jun; 66(11):3141-50. PubMed ID: 25796085
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biochemistry of high stearic sunflower, a new source of saturated fats.
    Salas JJ; Martínez-Force E; Harwood JL; Venegas-Calerón M; Aznar-Moreno JA; Moreno-Pérez AJ; Ruíz-López N; Serrano-Vega MJ; Graham IA; Mullen RT; Garcés R
    Prog Lipid Res; 2014 Jul; 55():30-42. PubMed ID: 24858414
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of some Evaporation Matters on Storability of Sunflower ( Helianthus annuus L.) Seed.
    El-Saidy AEA; El-Hai KMA
    Pak J Biol Sci; 2016; 19(6):239-249. PubMed ID: 29023070
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptomic identification and expression of starch and sucrose metabolism genes in the seeds of Chinese chestnut (Castanea mollissima).
    Zhang L; Lin Q; Feng Y; Fan X; Zou F; Yuan DY; Zeng X; Cao H
    J Agric Food Chem; 2015 Jan; 63(3):929-42. PubMed ID: 25537355
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Arabidopsis sucrose synthase 2 and 3 modulate metabolic homeostasis and direct carbon towards starch synthesis in developing seeds.
    Angeles-Núñez JG; Tiessen A
    Planta; 2010 Aug; 232(3):701-18. PubMed ID: 20559653
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational analysis of storage synthesis in developing Brassica napus L. (oilseed rape) embryos: flux variability analysis in relation to ¹³C metabolic flux analysis.
    Hay J; Schwender J
    Plant J; 2011 Aug; 67(3):513-25. PubMed ID: 21501261
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fatty acid synthesis and the oxidative pentose phosphate pathway in developing embryos of oilseed rape (Brassica napus L.).
    Hutchings D; Rawsthorne S; Emes MJ
    J Exp Bot; 2005 Feb; 56(412):577-85. PubMed ID: 15611146
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impact of sunflower (Helianthus annuus L.) plastidial lipoyl synthases genes expression in glycerolipids composition of transgenic Arabidopsis plants.
    Martins-Noguerol R; Moreno-Pérez AJ; Sebastien A; Troncoso-Ponce MA; Garcés R; Thomasset B; Salas JJ; Martínez-Force E
    Sci Rep; 2020 Feb; 10(1):3749. PubMed ID: 32111914
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two activities of long-chain acyl-coenzyme A synthetase are involved in lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis.
    Jessen D; Roth C; Wiermer M; Fulda M
    Plant Physiol; 2015 Feb; 167(2):351-66. PubMed ID: 25540329
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The plastidic DEAD-box RNA helicase 22, HS3, is essential for plastid functions both in seed development and in seedling growth.
    Kanai M; Hayashi M; Kondo M; Nishimura M
    Plant Cell Physiol; 2013 Sep; 54(9):1431-40. PubMed ID: 23803517
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proteomic analysis of near-isogenic sunflower varieties differing in seed oil traits.
    Hajduch M; Casteel JE; Tang S; Hearne LB; Knapp S; Thelen JJ
    J Proteome Res; 2007 Aug; 6(8):3232-41. PubMed ID: 17580850
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter.
    Vigeolas H; Waldeck P; Zank T; Geigenberger P
    Plant Biotechnol J; 2007 May; 5(3):431-41. PubMed ID: 17430545
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.
    González-Thuillier I; Venegas-Calerón M; Sánchez R; Garcés R; von Wettstein-Knowles P; Martínez-Force E
    Planta; 2016 Feb; 243(2):397-410. PubMed ID: 26433735
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sunflower HaGPAT9-1 is the predominant GPAT during seed development.
    Payá-Milans M; Aznar-Moreno JA; Balbuena TS; Haslam RP; Gidda SK; Pérez-Hormaeche J; Mullen RT; Thelen JJ; Napier JA; Salas JJ; Garcés R; Martínez-Force E; Venegas-Calerón M
    Plant Sci; 2016 Nov; 252():42-52. PubMed ID: 27717477
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Catalase activity and expression in developing sunflower seeds as related to drying.
    Bailly C; Leymarie J; Lehner A; Rousseau S; Côme D; Corbineau F
    J Exp Bot; 2004 Feb; 55(396):475-83. PubMed ID: 14739269
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of different doses of low power continuous wave he-ne laser radiation on some seed thermodynamic and germination parameters, and potential enzymes involved in seed germination of sunflower (Helianthus annuus L.).
    Perveen R; Ali Q; Ashraf M; Al-Qurainy F; Jamil Y; Raza Ahmad M
    Photochem Photobiol; 2010; 86(5):1050-5. PubMed ID: 20670360
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phospholipid molecular profiles in the seed kernel from different sunflower (Helianthus annuus) mutants.
    Salas JJ; Martínez-Force E; Garcés R
    Lipids; 2006 Aug; 41(8):805-11. PubMed ID: 17120935
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A critical role of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development.
    Muñoz-Bertomeu J; Cascales-Miñana B; Alaiz M; Segura J; Ros R
    Plant Signal Behav; 2010 Jan; 5(1):67-9. PubMed ID: 20592814
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genetic possibilities for altering sunflower oil quality to obtain novel oils.
    Skorić D; Jocić S; Sakac Z; Lecić N
    Can J Physiol Pharmacol; 2008 Apr; 86(4):215-21. PubMed ID: 18418432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.