BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 19665230)

  • 1. Secondary arsenic minerals in the environment: a review.
    Drahota P; Filippi M
    Environ Int; 2009 Nov; 35(8):1243-55. PubMed ID: 19665230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ chemical fixation of arsenic-contaminated soils: an experimental study.
    Yang L; Donahoe RJ; Redwine JC
    Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation.
    Kim EJ; Yoo JC; Baek K
    Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A; Karczewska A
    Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field trials to assess the use of iron-bearing industrial by-products for stabilisation of chromated copper arsenate-contaminated soil.
    Lidelöw S; Ragnvaldsson D; Leffler P; Tesfalidet S; Maurice C
    Sci Total Environ; 2007 Nov; 387(1-3):68-78. PubMed ID: 17804040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF
    Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of arsenic in the mining sites of Pine Creek Geosyncline, Northern Australia.
    Eapaea MP; Parry D; Noller B
    Sci Total Environ; 2007 Jul; 379(2-3):201-15. PubMed ID: 17499841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E; Zagury GJ
    Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic mobility and stabilization in topsoils.
    Tyrovola K; Nikolaidis NP
    Water Res; 2009 Apr; 43(6):1589-96. PubMed ID: 19201440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobile arsenic species in unpolluted and polluted soils.
    Huang JH; Matzner E
    Sci Total Environ; 2007 May; 377(2-3):308-18. PubMed ID: 17391732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speciation change and redistribution of arsenic in soil under anaerobic microbial activities.
    Xu L; Wu X; Wang S; Yuan Z; Xiao F; Yang M; Jia Y
    J Hazard Mater; 2016 Jan; 301():538-46. PubMed ID: 26434533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural attenuation processes for remediation of arsenic contaminated soils and groundwater.
    Wang S; Mulligan CN
    J Hazard Mater; 2006 Dec; 138(3):459-70. PubMed ID: 17049728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review.
    Wilson SC; Lockwood PV; Ashley PM; Tighe M
    Environ Pollut; 2010 May; 158(5):1169-81. PubMed ID: 19914753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic speciation in multiple metal environments II. Micro-spectroscopic investigation of a CCA contaminated soil.
    Gräfe M; Tappero RV; Marcus MA; Sparks DL
    J Colloid Interface Sci; 2008 May; 321(1):1-20. PubMed ID: 18321525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils.
    Juhasz AL; Smith E; Weber J; Rees M; Rofe A; Kuchel T; Sansom L; Naidu R
    Chemosphere; 2007 Aug; 69(1):69-78. PubMed ID: 17532365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speciation and transport of arsenic in an acid sulfate soil-dominated catchment, eastern Australia.
    Kinsela AS; Collins RN; Waite TD
    Chemosphere; 2011 Feb; 82(6):879-87. PubMed ID: 21094969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The environmental fate of arsenic in surface soil contaminated by historical herbicide application.
    Qi Y; Donahoe RJ
    Sci Total Environ; 2008 Nov; 405(1-3):246-54. PubMed ID: 18706676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic mobility controlled by solid calcium arsenates: a case study in Mexico showcasing a potentially widespread environmental problem.
    Martínez-Villegas N; Briones-Gallardo R; Ramos-Leal JA; Avalos-Borja M; Castañón-Sandoval AD; Razo-Flores E; Villalobos M
    Environ Pollut; 2013 May; 176():114-22. PubMed ID: 23416746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining.
    Ruiz-Chancho MJ; López-Sánchez JF; Rubio R
    Anal Bioanal Chem; 2007 Jan; 387(2):627-35. PubMed ID: 17171341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.