These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 19665552)

  • 1. Robotics-based synthesis of human motion.
    Khatib O; Demircan E; De Sapio V; Sentis L; Besier T; Delp S
    J Physiol Paris; 2009; 103(3-5):211-9. PubMed ID: 19665552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and evaluation of human motor skills in a virtual tennis task.
    Tanaka Y; Ishii M; Tsuji T; Imamura N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4190-3. PubMed ID: 19163636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of Constrained Musculoskeletal Systems in Task Space.
    Stanev D; Moustakas K
    IEEE Trans Biomed Eng; 2018 Feb; 65(2):307-318. PubMed ID: 29053446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.
    Rañó I
    Biol Cybern; 2012 Jul; 106(4-5):261-70. PubMed ID: 22648568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical modeling and optimal control of human posture.
    Menegaldo LL; Fleury Ade T; Weber HI
    J Biomech; 2003 Nov; 36(11):1701-12. PubMed ID: 14522212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematics effectively delineate accomplished users of endovascular robotics with a physical training model.
    Duran C; Estrada S; O'Malley M; Lumsden AB; Bismuth J
    J Vasc Surg; 2015 Feb; 61(2):535-41. PubMed ID: 25619579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of non-extensor muscles of the leg to maximal-effort countermovement jumping.
    Nagano A; Komura T; Yoshioka S; Fukashiro S
    Biomed Eng Online; 2005 Sep; 4():52. PubMed ID: 16143047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of motor skill based on musculoskeletal model.
    Murai A; Yamane K; Nakamura Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6542-5. PubMed ID: 19964900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approximate stochastic optimal control framework to simulate nonlinear neuro-musculoskeletal models in the presence of noise.
    Van Wouwe T; Ting LH; De Groote F
    PLoS Comput Biol; 2022 Jun; 18(6):e1009338. PubMed ID: 35675227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics.
    Biess A; Liebermann DG; Flash T
    J Neurosci; 2007 Nov; 27(48):13045-64. PubMed ID: 18045899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of virtual, interactive, musculoskeletal system (VIMS) in modeling and analysis of shoulder throwing activity.
    Lin HT; Nakamura Y; Su FC; Hashimoto J; Nobuhara K; Chao EY
    J Biomech Eng; 2005 Jun; 127(3):525-30. PubMed ID: 16060359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A graphics-based software system to develop and analyze models of musculoskeletal structures.
    Delp SL; Loan JP
    Comput Biol Med; 1995 Jan; 25(1):21-34. PubMed ID: 7600758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic feedback control laws for generating natural arm movements.
    Kim D; Jang C; Park FC
    Bioinspir Biomim; 2014 Mar; 9(1):016002. PubMed ID: 24343165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots.
    Fu KC; Dalla Libera F; Ishiguro H
    Bioinspir Biomim; 2015 Oct; 10(5):056016. PubMed ID: 26448530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
    Borbély BJ; Szolgay P
    Biomed Eng Online; 2017 Jan; 16(1):21. PubMed ID: 28095857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validated Predictions of Metabolic Energy Consumption for Submaximal Effort Movement.
    Tsianos GA; MacFadden LN
    PLoS Comput Biol; 2016 Jun; 12(6):e1004911. PubMed ID: 27248429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards predicting biomechanical consequences of jaw reconstruction.
    Stavness I; Hannam AG; Lloyd JE; Fels S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4567-70. PubMed ID: 19163732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.