BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19665698)

  • 1. Unsteady magnetohydrodynamic blood flow through irregular multi-stenosed arteries.
    Mustapha N; Amin N; Chakravarty S; Mandal PK
    Comput Biol Med; 2009 Oct; 39(10):896-906. PubMed ID: 19665698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses.
    Sarifuddin ; Chakravarty S; Mandal PK; Layek GC
    J Med Eng Technol; 2008; 32(5):385-99. PubMed ID: 18821416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling of non-Newtonian blood flow through stenosed arteries in the presence of magnetic field.
    Alshare A; Tashtoush B; El-Khalil HH
    J Biomech Eng; 2013 Nov; 135(11):114503. PubMed ID: 24061603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood flow imaging through detection of temporal variations in magnetization.
    Wolf RL; Richardson DB; LaPlante CC; Huston J; Riederer SJ; Ehman RL
    Radiology; 1992 Nov; 185(2):559-67. PubMed ID: 1410373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of surface irregularities on flow resistance in differently shaped arterial stenoses.
    Andersson HI; Halden R; Glomsaker T
    J Biomech; 2000 Oct; 33(10):1257-62. PubMed ID: 10899335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Newtonian and non-Newtonian flows in a two-dimensional carotid artery model using the lattice Boltzmann method.
    Boyd J; Buick JM
    Phys Med Biol; 2007 Oct; 52(20):6215-28. PubMed ID: 17921581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical modelling of the release rate of low-density lipoproteins and their breakdown products at arterial stenoses.
    Deng X; Stroman PW; Guidoin R
    Clin Invest Med; 1996 Apr; 19(2):83-91. PubMed ID: 8697674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Model experiment and numerical simulation of marginal pressure in the flow field downstream of the stenostic vessel in vitro].
    Guo Y; Shi Y; Zhang J; Xue W; Liu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):300-3. PubMed ID: 16706352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects.
    Tripathi J; Vasu B; Bég OA; Mounika BR; Gorla RSR
    Microvasc Res; 2022 Jan; 139():104241. PubMed ID: 34508788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Design and adjustment of a hydrodynamic model of turbulent flow separation area for in vitro experiment on the downstream of tubal stenosis].
    Guo Y; Shi Y; Xue W; Lin K; Liu S; Zhang J; Meng W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb; 22(1):38-42. PubMed ID: 15762111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and analysis of biomagnetic blood Carreau fluid flow through a stenosis artery with magnetic heat transfer: A transient study.
    Abdollahzadeh Jamalabadi MY; Daqiqshirazi M; Nasiri H; Safaei MR; Nguyen TK
    PLoS One; 2018; 13(2):e0192138. PubMed ID: 29489852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effects of Thermal Radiation on an Unsteady MHD Axisymmetric Stagnation-Point Flow over a Shrinking Sheet in Presence of Temperature Dependent Thermal Conductivity with Navier Slip.
    Mondal S; Haroun NA; Sibanda P
    PLoS One; 2015; 10(9):e0138355. PubMed ID: 26414006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetically induced electric fields and currents in the circulatory system.
    Tenforde TS
    Prog Biophys Mol Biol; 2005; 87(2-3):279-88. PubMed ID: 15556666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of arterial stenosis and its applications to blood diseases.
    Pralhad RN; Schultz DH
    Math Biosci; 2004 Aug; 190(2):203-20. PubMed ID: 15234617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspects of fluid dynamics applied to the larger arteries.
    Wood NB
    J Theor Biol; 1999 Jul; 199(2):137-61. PubMed ID: 10395811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biorheological aspects of blood flow through artery with mild stenosis : effects of peripheral layer.
    Shukla JB; Gupta SP; Parihar RS
    Biorheology; 1980; 17(5-6):403-10. PubMed ID: 7306691
    [No Abstract]   [Full Text] [Related]  

  • 17. A study of non-Newtonian aspects of blood flow through stenosed arteries and its applications in arterial diseases.
    Chaturani P; Samy RP
    Biorheology; 1985; 22(6):521-31. PubMed ID: 3834958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Stenotic Geometry and Non-newtonian Property of Blood Flow through Arterial Stenosis.
    Sriyab S
    Cardiovasc Hematol Disord Drug Targets; 2020; 20(1):16-30. PubMed ID: 31072297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waveform dependence of pulsatile flow in a stenosed channel.
    Liu H; Yamaguchi T
    J Biomech Eng; 2001 Feb; 123(1):88-96. PubMed ID: 11277307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Eddy simulation of pulsatile blood flow.
    Paul MC; Mamun Molla M; Roditi G
    Med Eng Phys; 2009 Jan; 31(1):153-9. PubMed ID: 18562236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.