BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 19665750)

  • 1. A comparison of disinfection by-products found in chlorinated and chloraminated drinking waters in Scotland.
    Goslan EH; Krasner SW; Bower M; Rocks SA; Holmes P; Levy LS; Parsons SA
    Water Res; 2009 Oct; 43(18):4698-706. PubMed ID: 19665750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems.
    Liew D; Linge KL; Joll CA
    Environ Monit Assess; 2016 Sep; 188(9):518. PubMed ID: 27523603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research.
    Richardson SD; Plewa MJ; Wagner ED; Schoeny R; Demarini DM
    Mutat Res; 2007; 636(1-3):178-242. PubMed ID: 17980649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of chlorination and chloramination in carbonaceous and nitrogenous disinfection byproduct formation potentials with prolonged contact time.
    Sakai H; Tokuhara S; Murakami M; Kosaka K; Oguma K; Takizawa S
    Water Res; 2016 Jan; 88():661-670. PubMed ID: 26575475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of water chemistry on disinfection by-product formation in the complex surface water system.
    Hao R; Zhang Y; Du T; Yang L; Adeleye AS; Li Y
    Chemosphere; 2017 Apr; 172():384-391. PubMed ID: 28088529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The formation and control of emerging disinfection by-products of health concern.
    Krasner SW
    Philos Trans A Math Phys Eng Sci; 2009 Oct; 367(1904):4077-95. PubMed ID: 19736234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of DBPs formation from SMPs exposed to chlorine, chloramine and ozone.
    Zhang B; Xian Q; Lu J; Gong T; Li A; Feng J
    J Water Health; 2017 Apr; 15(2):185-195. PubMed ID: 28362300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence and control of nitrogenous disinfection by-products in drinking water--a review.
    Bond T; Huang J; Templeton MR; Graham N
    Water Res; 2011 Oct; 45(15):4341-54. PubMed ID: 21705040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.
    Xue R; Shi H; Ma Y; Yang J; Hua B; Inniss EC; Adams CD; Eichholz T
    Chemosphere; 2017 Dec; 189():349-356. PubMed ID: 28942261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A balancing act: Optimizing free chlorine contact time to minimize iodo-DBPs, NDMA, and regulated DBPs in chloraminated drinking water.
    Bloodgood MA; Chowdary SA; Daiber EJ; Shi H; Granger CO; Richardson SD
    J Environ Sci (China); 2022 Jul; 117():315-325. PubMed ID: 35725085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine.
    Bougeard CM; Goslan EH; Jefferson B; Parsons SA
    Water Res; 2010 Feb; 44(3):729-40. PubMed ID: 19910014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of iodo-trihalomethanes, iodo-haloacetic acids, and haloacetaldehydes during chlorination and chloramination of iodine containing waters in laboratory controlled reactions.
    Postigo C; Richardson SD; Barceló D
    J Environ Sci (China); 2017 Aug; 58():127-134. PubMed ID: 28774601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Disinfection by-products reduction of combined disinfection by chlorine and monochloramines in distribution system].
    Liu J; Chen C; Zhang XJ
    Huan Jing Ke Xue; 2009 Sep; 30(9):2538-42. PubMed ID: 19927800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence of a new generation of disinfection byproducts.
    Krasner SW; Weinberg HS; Richardson SD; Pastor SJ; Chinn R; Sclimenti MJ; Onstad GD; Thruston AD
    Environ Sci Technol; 2006 Dec; 40(23):7175-85. PubMed ID: 17180964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of iodinated trihalomethanes formation during aqueous chlor(am)ination of different iodinated X-ray contrast media compounds in the presence of natural organic matter.
    Ye T; Xu B; Wang Z; Zhang TY; Hu CY; Lin L; Xia SJ; Gao NY
    Water Res; 2014 Dec; 66():390-398. PubMed ID: 25240119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-nitrosodimethylamine and trihalomethane formation and minimisation in Southeast Queensland drinking water.
    Knight N; Watson K; Farré MJ; Shaw G
    Environ Monit Assess; 2012 Jul; 184(7):4207-22. PubMed ID: 21792515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO
    Padhi RK; Subramanian S; Satpathy KK
    Chemosphere; 2019 Mar; 218():540-550. PubMed ID: 30500715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regression models evaluating THMs, HAAs and HANs formation upon chloramination of source water collected from Yangtze River Delta Region, China.
    Lin J; Chen X; Ansheng Z; Hong H; Liang Y; Sun H; Lin H; Chen J
    Ecotoxicol Environ Saf; 2018 Sep; 160():249-256. PubMed ID: 29843106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrences of nitrosamines in chlorinated and chloraminated drinking water in three representative cities, China.
    Luo Q; Wang D; Wang Z
    Sci Total Environ; 2012 Oct; 437():219-25. PubMed ID: 22940482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.