BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 19665846)

  • 21. Evaluation of top, angle, and side cleaned FIB samples for TEM analysis.
    Montoya E; Bals S; Rossell MD; Schryvers D; Van Tendeloo G
    Microsc Res Tech; 2007 Dec; 70(12):1060-71. PubMed ID: 17722055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Encapsulation of pt-labelled DNA molecules inside carbon nanotubes.
    Cui D; Ozkan CS; Ravindran S; Kong Y; Gao H
    Mech Chem Biosyst; 2004 Jun; 1(2):113-21. PubMed ID: 16783937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Chen X; Wang R; Xu J; Yu D
    Micron; 2004; 35(6):455-60. PubMed ID: 15120130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Technique for preparation and characterization in cross-section of oral titanium implant surfaces using focused ion beam and transmission electron microscopy.
    Jarmar T; Palmquist A; Brånemark R; Hermansson L; Engqvist H; Thomsen P
    J Biomed Mater Res A; 2008 Dec; 87(4):1003-9. PubMed ID: 18257067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electromechanical properties of individual single-walled carbon nanotubes grown on focused-ion-beam patterned substrates.
    Jaroenapibal P; Jung Y; Evoy S; Luzzi DE
    Ultramicroscopy; 2009 Jan; 109(2):167-71. PubMed ID: 19064311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A technique for the preparation of cross-sectional TEM samples of ZnSe/GaAs heterostructures which eliminates process-induced defects.
    Yu JE; Jones KS; Park RM
    J Electron Microsc Tech; 1991 Jul; 18(3):315-24. PubMed ID: 1880604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ transmission electron microscopy observations of individually selected freestanding carbon nanotubes during field emission.
    Kaiser M; Doytcheva M; Verheijen M; de Jonge N
    Ultramicroscopy; 2006; 106(10):902-8. PubMed ID: 16737778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of TEM specimen preparation of perovskite thin films by tripod polishing and conventional ion milling.
    Eberg E; Monsen AF; Tybell T; van Helvoort AT; Holmestad R
    J Electron Microsc (Tokyo); 2008 Dec; 57(6):175-9. PubMed ID: 18815212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transmission electron microscopy and atom probe specimen preparation from mechanically alloyed powder using the focused ion-beam lift-out technique.
    Choi PP; Kwon YS; Kim JS; Al-Kassab T
    J Electron Microsc (Tokyo); 2007 Apr; 56(2):43-9. PubMed ID: 17928320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TEM foil preparation of sub-micrometre sized individual grains by focused ion beam technique.
    Holzapfel C; Soldera F; Vollmer C; Hoppe P; Mücklich F
    J Microsc; 2009 Jul; 235(1):59-66. PubMed ID: 19566627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of TEM samples of metal-oxide interface by the focused ion beam technique.
    Abolhassani S; Gasser P
    J Microsc; 2006 Jul; 223(Pt 1):73-82. PubMed ID: 16872434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative study of carbon nanotube dispersion using surfactants.
    Rastogi R; Kaushal R; Tripathi SK; Sharma AL; Kaur I; Bharadwaj LM
    J Colloid Interface Sci; 2008 Dec; 328(2):421-8. PubMed ID: 18848704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation for TEM of layered samples with fragile microstructure and weak layer interface.
    Westman AK; Wei LY; Barre F
    Microsc Res Tech; 1999 May; 45(3):198-202. PubMed ID: 10344771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conventional and back-side focused ion beam milling for off-axis electron holography of electrostatic potentials in transistors.
    Dunin-Borkowski RE; Newcomb SB; Kasama T; McCartney MR; Weyland M; Midgley PA
    Ultramicroscopy; 2005 Apr; 103(1):67-81. PubMed ID: 15777601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of permanent marker to deposit a protection layer against FIB damage in TEM specimen preparation.
    Park YC; Park BC; Romankov S; Park KJ; Yoo JH; Lee YB; Yang JM
    J Microsc; 2014 Sep; 255(3):180-7. PubMed ID: 24957186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The application of FIB milling for specimen preparation from crystalline germanium.
    Rubanov S; Munroe PR
    Micron; 2004; 35(7):549-56. PubMed ID: 15219901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cross-sectional Specimen Preparation and Observation of a Plasma Sprayed Coating Using a Focused Ion Beam/Transmission Electron Microscopy System.
    Yaguchi T; Kamino T; Sasaki M; Barbezat G; Urao R
    Microsc Microanal; 2000 May; 6(3):218-223. PubMed ID: 10790490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A guide on FIB preparation of samples containing stress corrosion crack tips for TEM and atom-probe analysis.
    Lozano-Perez S
    Micron; 2008; 39(3):320-8. PubMed ID: 18258443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of cross-sectional TEM samples for low-angle ion milling.
    McCaffrey JP; Barna A
    Microsc Res Tech; 1997 Mar; 36(5):362-7. PubMed ID: 9140935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Location specific in situ TEM straining specimens made using FIB.
    Field RD; Papin PA
    Ultramicroscopy; 2004 Dec; 102(1):23-6. PubMed ID: 15556697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.