These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 19665890)
1. Potential of Ginkgo biloba L. leaves in the management of hyperglycemia and hypertension using in vitro models. Pinto Mda S; Kwon YI; Apostolidis E; Lajolo FM; Genovese MI; Shetty K Bioresour Technol; 2009 Dec; 100(24):6599-609. PubMed ID: 19665890 [TBL] [Abstract][Full Text] [Related]
2. Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean. McCue P; Kwon YI; Shetty K Asia Pac J Clin Nutr; 2005; 14(2):145-52. PubMed ID: 15927931 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Kwon YI; Vattem DA; Shetty K Asia Pac J Clin Nutr; 2006; 15(1):107-18. PubMed ID: 16500886 [TBL] [Abstract][Full Text] [Related]
4. Functionality of bioactive compounds in Brazilian strawberry (Fragaria x ananassa Duch.) cultivars: evaluation of hyperglycemia and hypertension potential using in vitro models. da Silva Pinto M; Kwon YI; Apostolidis E; Lajolo FM; Genovese MI; Shetty K J Agric Food Chem; 2008 Jun; 56(12):4386-92. PubMed ID: 18522404 [TBL] [Abstract][Full Text] [Related]
5. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Ademiluyi AO; Oboh G Exp Toxicol Pathol; 2013 Mar; 65(3):305-9. PubMed ID: 22005499 [TBL] [Abstract][Full Text] [Related]
6. In vitro studies of Gynura divaricata (L.) DC extracts as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Wu T; Zhou X; Deng Y; Jing Q; Li M; Yuan L J Ethnopharmacol; 2011 Jun; 136(2):305-8. PubMed ID: 21570455 [TBL] [Abstract][Full Text] [Related]
7. Phenolic-linked variation in strawberry cultivars for potential dietary management of hyperglycemia and related complications of hypertension. Cheplick S; Kwon YI; Bhowmik P; Shetty K Bioresour Technol; 2010 Jan; 101(1):404-13. PubMed ID: 19695871 [TBL] [Abstract][Full Text] [Related]
8. Metal ion and antioxidant alterations in leaves between different sexes of Ginkgo biloba L. Stefanovits-Bányai E; Szentmihályi K; Hegedus A; Koczka N; Váli L; Taba G; Blázovics A Life Sci; 2006 Feb; 78(10):1049-56. PubMed ID: 16423371 [TBL] [Abstract][Full Text] [Related]
9. In vitro inhibitory potential of selected Malaysian plants against key enzymes involved in hyperglycemia and hypertension. Loh SP; Hadira O Malays J Nutr; 2011 Apr; 17(1):77-86. PubMed ID: 22135867 [TBL] [Abstract][Full Text] [Related]
10. Phenolic-rich extracts from selected tropical underutilized legumes inhibit α-amylase, α-glucosidase, and angiotensin I converting enzyme in vitro. Ademiluyi AO; Oboh G J Basic Clin Physiol Pharmacol; 2012 Jan; 23(1):17-25. PubMed ID: 22865445 [TBL] [Abstract][Full Text] [Related]
11. Anti-hyperglycemia properties of Tea (Camellia sinensis) bioactives using in vitro assay models and influence of extraction time. Ankolekar C; Terry T; Johnson K; Johnson D; Barbosa AC; Shetty K J Med Food; 2011 Oct; 14(10):1190-7. PubMed ID: 21859352 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of Rhodiola crenulata and Rhodiola rosea for management of type II diabetes and hypertension. Kwon YI; Jang HD; Shetty K Asia Pac J Clin Nutr; 2006; 15(3):425-32. PubMed ID: 16837437 [TBL] [Abstract][Full Text] [Related]
13. Phytochemical screening and evaluation of in vitro angiotensin-converting enzyme inhibitory activity of Artocarpus altilis leaf. Siddesha JM; Angaswamy N; Vishwanath BS Nat Prod Res; 2011 Dec; 25(20):1931-40. PubMed ID: 21756104 [TBL] [Abstract][Full Text] [Related]
14. Shaddock peels (Citrus maxima) phenolic extracts inhibit α-amylase, α-glucosidase and angiotensin I-converting enzyme activities: a nutraceutical approach to diabetes management. Oboh G; Ademosun AO Diabetes Metab Syndr; 2011; 5(3):148-52. PubMed ID: 22813568 [TBL] [Abstract][Full Text] [Related]
15. In vivo and in vitro antidiabetic effect of Cistus laurifolius L. and detection of major phenolic compounds by UPLC-TOF-MS analysis. Orhan N; Aslan M; Süküroğlu M; Deliorman Orhan D J Ethnopharmacol; 2013 Apr; 146(3):859-65. PubMed ID: 23462413 [TBL] [Abstract][Full Text] [Related]
16. In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Kwon YI; Apostolidis E; Shetty K Bioresour Technol; 2008 May; 99(8):2981-8. PubMed ID: 17706416 [TBL] [Abstract][Full Text] [Related]
17. Improved alpha-amylase and Helicobacter pylori inhibition by fenugreek extracts derived via solid-state bioconversion using Rhizopus oligosporus. Randhir R; Shetty K Asia Pac J Clin Nutr; 2007; 16(3):382-92. PubMed ID: 17704018 [TBL] [Abstract][Full Text] [Related]
18. In vitro investigations of the potential health benefits of Australian-grown faba beans (Vicia faba L.): chemopreventative capacity and inhibitory effects on the angiotensin-converting enzyme, α-glucosidase and lipase. Siah SD; Konczak I; Agboola S; Wood JA; Blanchard CL Br J Nutr; 2012 Aug; 108 Suppl 1():S123-34. PubMed ID: 22916808 [TBL] [Abstract][Full Text] [Related]
19. Potential of cranberry-based herbal synergies for diabetes and hypertension management. Apostolidis E; Kwon YI; Shetty K Asia Pac J Clin Nutr; 2006; 15(3):433-41. PubMed ID: 16837438 [TBL] [Abstract][Full Text] [Related]
20. Health benefits of traditional corn, beans, and pumpkin: in vitro studies for hyperglycemia and hypertension management. Kwon YI; Apostolidis E; Kim YC; Shetty K J Med Food; 2007 Jun; 10(2):266-75. PubMed ID: 17651062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]