These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1966603)

  • 21. Long-term depression requires nitric oxide and guanosine 3':5' cyclic monophosphate production in rat cerebellar Purkinje cells.
    Daniel H; Hemart N; Jaillard D; Crepel F
    Eur J Neurosci; 1993 Aug; 5(8):1079-82. PubMed ID: 7506617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different types of glutamate receptors in isolated and identified neurones of the mollusc Planorbarius corneus.
    Bolshakov VYu ; Gapon SA; Magazanik LG
    J Physiol; 1991 Aug; 439():15-35. PubMed ID: 1654412
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Desensitization of AMPA receptors and AMPA-NMDA receptor interaction: an in vivo cyclic GMP microdialysis study in rat cerebellum.
    Fedele E; Raiteri M
    Br J Pharmacol; 1996 Mar; 117(6):1133-8. PubMed ID: 8882607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cerebellar excitatory amino acid binding sites in normal, granuloprival, and Purkinje cell-deficient mice.
    Makowiec RL; Cha JJ; Penney JB; Young AB
    Neuroscience; 1991; 42(3):671-81. PubMed ID: 1683473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intercellular action of nitric oxide in adult rat cerebellar slices.
    Southam E; Garthwaite J
    Neuroreport; 1991 Nov; 2(11):658-60. PubMed ID: 1687356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A kainate receptor linked to nitric oxide synthesis from arginine.
    Garthwaite J; Southam E; Anderton M
    J Neurochem; 1989 Dec; 53(6):1952-4. PubMed ID: 2553870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A pharmacological characterization of the mGluR1 alpha subtype of the metabotropic glutamate receptor expressed in a cloned baby hamster kidney cell line.
    Thomsen C; Mulvihill ER; Haldeman B; Pickering DS; Hampson DR; Suzdak PD
    Brain Res; 1993 Aug; 619(1-2):22-8. PubMed ID: 7690672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of metabotropic glutamate receptor-mediated facilitation of N-methyl-D-aspartate depolarization of neocortical neurones.
    Rahman S; Neuman RS
    Br J Pharmacol; 1996 Feb; 117(4):675-83. PubMed ID: 8646413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/quisqualate receptors by phospholipase A2: a necessary step in long-term potentiation?
    Massicotte G; Vanderklish P; Lynch G; Baudry M
    Proc Natl Acad Sci U S A; 1991 Mar; 88(5):1893-7. PubMed ID: 1848014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glutamate receptors activate Ca2+ mobilization and Ca2+ influx into astrocytes.
    Glaum SR; Holzwarth JA; Miller RJ
    Proc Natl Acad Sci U S A; 1990 May; 87(9):3454-8. PubMed ID: 1970637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inositolphospholipid-linked glutamate receptors mediate cerebellar parallel-fiber-Purkinje-cell synaptic transmission.
    Blackstone CD; Supattapone S; Snyder SH
    Proc Natl Acad Sci U S A; 1989 Jun; 86(11):4316-20. PubMed ID: 2542969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selectivity of amino acid transmitters acting at N-methyl-D-aspartate and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors.
    Curras MC; Dingledine R
    Mol Pharmacol; 1992 Mar; 41(3):520-6. PubMed ID: 1372086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for a glutamate receptor of the AMPA subtype which mediates insulin release from rat perfused pancreas.
    Bertrand G; Gross R; Puech R; Loubatières-Mariani MM; Bockaert J
    Br J Pharmacol; 1992 Jun; 106(2):354-9. PubMed ID: 1382779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyclic GMP generation mediated by 5-HT-2 receptors via nitric oxide-dependent pathway and its effect on the desensitization of 5-HT-2 receptors in C6 glioma cells.
    Kagaya A; Motohashi N; Kugaya A; Yamaji T; Hayashi T; Okamoto Y; Shinno H; Takebayashi M; Uchitomi Y; Yamawaki S
    J Neural Transm Gen Sect; 1995; 100(1):27-38. PubMed ID: 8748661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role for ionotropic and metabotropic receptors in quisqualate-stimulated inositol polyphosphate accumulation in rat cerebral cortex.
    Baird JG; Challiss RA; Nahorski SR
    Mol Pharmacol; 1991 Jun; 39(6):745-53. PubMed ID: 1646948
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glutamate receptors and phosphoinositide metabolism: stimulation via quisqualate receptors is inhibited by N-methyl-D-aspartate receptor activation.
    Palmer E; Monaghan DT; Cotman CW
    Brain Res; 1988 Sep; 464(2):161-5. PubMed ID: 2905924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum.
    Shibuki K; Okada D
    Nature; 1991 Jan; 349(6307):326-8. PubMed ID: 1702879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of ACPD and AP3 on parallel-fibre-mediated EPSPs of Purkinje cells in cerebellar slices in vitro.
    Crepel F; Daniel H; Hemart N; Jaillard D
    Exp Brain Res; 1991; 86(2):402-6. PubMed ID: 1661680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quisqualate resolves two distinct metabotropic [3H]glutamate binding sites.
    Catania MV; Hollingsworth Z; Penney JB; Young AB
    Neuroreport; 1993 Mar; 4(3):311-3. PubMed ID: 7682857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autoradiographic characterization of [3H]L-glutamate binding sites in developing mouse cerebellar cortex.
    Garcia-Ladona FJ; Palacios JM; Girard C; Gombos G
    Neuroscience; 1991; 41(1):243-55. PubMed ID: 1676139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.