These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 19666133)
21. Heterologous protein expression by Lactococcus lactis. Villatoro-Hernández J; Kuipers OP; Saucedo-Cárdenas O; Montes-de-Oca-Luna R Methods Mol Biol; 2012; 824():155-65. PubMed ID: 22160898 [TBL] [Abstract][Full Text] [Related]
22. Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Pontes DS; de Azevedo MS; Chatel JM; Langella P; Azevedo V; Miyoshi A Protein Expr Purif; 2011 Oct; 79(2):165-75. PubMed ID: 21704169 [TBL] [Abstract][Full Text] [Related]
23. Multicopy integration of heterologous genes, using the lactococcal group II intron targeted to bacterial insertion sequences. Rawsthorne H; Turner KN; Mills DA Appl Environ Microbiol; 2006 Sep; 72(9):6088-93. PubMed ID: 16957233 [TBL] [Abstract][Full Text] [Related]
24. Natural sweetening of food products by engineering Lactococcus lactis for glucose production. Pool WA; Neves AR; Kok J; Santos H; Kuipers OP Metab Eng; 2006 Sep; 8(5):456-64. PubMed ID: 16844396 [TBL] [Abstract][Full Text] [Related]
25. Immunomodulation by genetically engineered lactic acid bacteria. Van Huynegem K; Loos M; Steidler L Front Biosci (Landmark Ed); 2009 Jun; 14(13):4825-35. PubMed ID: 19482589 [TBL] [Abstract][Full Text] [Related]
26. Integrating biocompatible chemistry and manipulating cofactor partitioning in metabolically engineered Lactococcus lactis for fermentative production of (3S)-acetoin. Liu J; Solem C; Jensen PR Biotechnol Bioeng; 2016 Dec; 113(12):2744-2748. PubMed ID: 27344975 [TBL] [Abstract][Full Text] [Related]
27. Restructured Lactococcus lactis strains with emergent properties constructed by a novel highly efficient screening system. Liu F; Zhang Y; Qiao W; Zhu D; Xu H; Saris PEJ; Qiao M Microb Cell Fact; 2019 Nov; 18(1):198. PubMed ID: 31727072 [TBL] [Abstract][Full Text] [Related]
28. Enhancement of acetyl-CoA by acetate co-utilization in recombinant Lactococcus lactis cultures enables the production of high molecular weight hyaluronic acid. Puvendran K; Jayaraman G Appl Microbiol Biotechnol; 2019 Sep; 103(17):6989-7001. PubMed ID: 31267232 [TBL] [Abstract][Full Text] [Related]
29. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Asadollahi MA; Maury J; Patil KR; Schalk M; Clark A; Nielsen J Metab Eng; 2009 Nov; 11(6):328-34. PubMed ID: 19619667 [TBL] [Abstract][Full Text] [Related]
30. Variations of N-acetylation level of peptidoglycan do not influence persistence of Lactococcus lactis in the gastrointestinal tract. Watterlot L; Meyrand M; Gaide N; Kharrat P; Blugeon S; Gratadoux JJ; Flores MJ; Langella P; Chapot-Chartier MP; Bermúdez-Humarán LG Int J Food Microbiol; 2010 Nov; 144(1):29-34. PubMed ID: 20851488 [TBL] [Abstract][Full Text] [Related]
31. Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer. de Azevedo M; Meijerink M; Taverne N; Pereira VB; LeBlanc JG; Azevedo V; Miyoshi A; Langella P; Wells JM; Chatel JM Vaccine; 2015 Sep; 33(38):4807-12. PubMed ID: 26241952 [TBL] [Abstract][Full Text] [Related]
32. α-Acetolactate synthase of Lactococcus lactis contributes to pH homeostasis in acid stress conditions. Zuljan FA; Repizo GD; Alarcon SH; Magni C Int J Food Microbiol; 2014 Oct; 188():99-107. PubMed ID: 25100661 [TBL] [Abstract][Full Text] [Related]
34. Expression of green fluorescent protein in Lactococcus lactis. Fernández de Palencia P; Nieto C; Acebo P; Espinosa M; López P FEMS Microbiol Lett; 2000 Feb; 183(2):229-34. PubMed ID: 10675589 [TBL] [Abstract][Full Text] [Related]
35. The genome and transcriptome of Lactococcus lactis ssp. lactis F44 and G423: Insights into adaptation to the acidic environment. Tian K; Li Y; Wang B; Wu H; Caiyin Q; Zhang Z; Qiao J J Dairy Sci; 2019 Feb; 102(2):1044-1058. PubMed ID: 30594364 [TBL] [Abstract][Full Text] [Related]
36. [Construction and verification of Lactococcus lactis NZ9000 genome-scale metabolic model]. Sun W; Zhang J; Du G Sheng Wu Gong Cheng Xue Bao; 2020 Aug; 36(8):1629-1639. PubMed ID: 32924361 [TBL] [Abstract][Full Text] [Related]
37. The Evolution of gene regulation research in Lactococcus lactis. Kok J; van Gijtenbeek LA; de Jong A; van der Meulen SB; Solopova A; Kuipers OP FEMS Microbiol Rev; 2017 Aug; 41(Supp_1):S220-S243. PubMed ID: 28830093 [TBL] [Abstract][Full Text] [Related]
38. Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production. Bai DM; Zhao XM; Li XG; Xu SM Biotechnol Bioeng; 2004 Dec; 88(6):681-9. PubMed ID: 15532044 [TBL] [Abstract][Full Text] [Related]
39. High-level heterologous production and functional expression of the sec-dependent enterocin P from Enterococcus faecium P13 in Lactococcus lactis. Gutiérrez J; Larsen R; Cintas LM; Kok J; Hernández PE Appl Microbiol Biotechnol; 2006 Aug; 72(1):41-51. PubMed ID: 16416297 [TBL] [Abstract][Full Text] [Related]
40. Expression of prophage-encoded endolysins contributes to autolysis of Lactococcus lactis. Visweswaran GR; Kurek D; Szeliga M; Pastrana FR; Kuipers OP; Kok J; Buist G Appl Microbiol Biotechnol; 2017 Feb; 101(3):1099-1110. PubMed ID: 27660179 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]