BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 19666147)

  • 1. Influence of extreme pedal rates on pulmonary O(2) uptake kinetics during transitions to high-intensity exercise from an elevated baseline.
    Dimenna FJ; Wilkerson DP; Burnley M; Bailey SJ; Jones AM
    Respir Physiol Neurobiol; 2009 Oct; 169(1):16-23. PubMed ID: 19666147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of initial metabolic rate on pulmonary O2 uptake on-kinetics during severe intensity exercise.
    Wilkerson DP; Jones AM
    Respir Physiol Neurobiol; 2006 Jun; 152(2):204-19. PubMed ID: 16337226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of priming exercise on pulmonary O2 uptake kinetics during transitions to high-intensity exercise from an elevated baseline.
    DiMenna FJ; Wilkerson DP; Burnley M; Jones AM
    J Appl Physiol (1985); 2008 Aug; 105(2):538-46. PubMed ID: 18511522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of priming exercise on muscle [PCr] and pulmonary O2 uptake dynamics during 'work-to-work' knee-extension exercise.
    Dimenna FJ; Fulford J; Bailey SJ; Vanhatalo A; Wilkerson DP; Jones AM
    Respir Physiol Neurobiol; 2010 Jun; 172(1-2):15-23. PubMed ID: 20417317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of baseline metabolic rate on pulmonary O2 uptake on-kinetics during heavy-intensity exercise in humans.
    Wilkerson DP; Jones AM
    Respir Physiol Neurobiol; 2007 May; 156(2):203-11. PubMed ID: 17092783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High content of MYHC II in vastus lateralis is accompanied by higher VO2/power output ratio during moderate intensity cycling performed both at low and at high pedalling rates.
    Majerczak J; Szkutnik Z; Karasinski J; Duda K; Kolodziejski L; Zoladz JA
    J Physiol Pharmacol; 2006 Jun; 57(2):199-215. PubMed ID: 16845226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of different pedal rates on oxygen uptake slow component during constant-load cycling exercise.
    Migita T; Hirakoba K
    J Sports Med Phys Fitness; 2006 Jun; 46(2):189-96. PubMed ID: 16823346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between oxygen uptake slow component and surface EMG during heavy exercise in humans: influence of pedal rate.
    Vercruyssen F; Missenard O; Brisswalter J
    J Electromyogr Kinesiol; 2009 Aug; 19(4):676-84. PubMed ID: 18424174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of skeletal muscle oxygenation during sequential bouts of moderate exercise.
    Ferreira LF; Lutjemeier BJ; Townsend DK; Barstow TJ
    Exp Physiol; 2005 May; 90(3):393-401. PubMed ID: 15708875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Priming exercise speeds pulmonary O2 uptake kinetics during supine "work-to-work" high-intensity cycle exercise.
    DiMenna FJ; Wilkerson DP; Burnley M; Bailey SJ; Jones AM
    J Appl Physiol (1985); 2010 Feb; 108(2):283-92. PubMed ID: 19959765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of work rate on the functional 'gain' of Phase II pulmonary O2 uptake response to exercise.
    Wilkerson DP; Koppo K; Barstow TJ; Jones AM
    Respir Physiol Neurobiol; 2004 Sep; 142(2-3):211-23. PubMed ID: 15450481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prior heavy exercise increases oxygen cost during moderate exercise without associated change in surface EMG.
    Gonzales JU; Scheuermann BW
    J Electromyogr Kinesiol; 2008 Feb; 18(1):99-107. PubMed ID: 17064938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of baseline metabolic rate on pulmonary O₂ uptake kinetics during very heavy intensity exercise in boys and men.
    Breese BC; Barker AR; Armstrong N; Jones AM; Williams CA
    Respir Physiol Neurobiol; 2012 Mar; 180(2-3):223-9. PubMed ID: 22154695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of blood donation on oxygen uptake kinetics during moderate and heavy intensity cycle exercise.
    Gordon D; Marshall K; Connell A; Barnes RJ
    Int J Sports Med; 2010 May; 31(5):298-303. PubMed ID: 20180178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of training status and exercise intensity on phase II VO2 kinetics.
    Koppo K; Bouckaert J; Jones AM
    Med Sci Sports Exerc; 2004 Feb; 36(2):225-32. PubMed ID: 14767244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-intensity interval training speeds the adjustment of pulmonary O2 uptake, but not muscle deoxygenation, during moderate-intensity exercise transitions initiated from low and elevated baseline metabolic rates.
    Williams AM; Paterson DH; Kowalchuk JM
    J Appl Physiol (1985); 2013 Jun; 114(11):1550-62. PubMed ID: 23519229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between (non)linear phase II pulmonary oxygen uptake kinetics with skeletal muscle oxygenation and age in 11-15 year olds.
    Breese BC; Saynor ZL; Barker AR; Armstrong N; Williams CA
    Exp Physiol; 2019 Dec; 104(12):1929-1941. PubMed ID: 31512297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. V02 'overshoot' during moderate-intensity exercise in endurance-trained athletes: the influence of exercise modality.
    Kilding AE; Jones AM
    Respir Physiol Neurobiol; 2008 Feb; 160(2):139-46. PubMed ID: 17981522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of hyperoxia on pulmonary O2 uptake kinetics following the onset of exercise in humans.
    Wilkerson DP; Berger NJ; Jones AM
    Respir Physiol Neurobiol; 2006 Aug; 153(1):92-106. PubMed ID: 16309978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulmonary O2 uptake on-kinetics in rowing and cycle ergometer exercise.
    Roberts CL; Wilkerson DP; Jones AM
    Respir Physiol Neurobiol; 2005 Apr; 146(2-3):247-58. PubMed ID: 15766913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.