These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 19666344)
1. Measuring changes of movement dynamics during robot-aided neurorehabilitation of stroke patients. Colombo R; Sterpi I; Mazzone A; Delconte C; Minuco G; Pisano F IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):75-85. PubMed ID: 19666344 [TBL] [Abstract][Full Text] [Related]
2. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. Colombo R; Pisano F; Micera S; Mazzone A; Delconte C; Carrozza MC; Dario P; Minuco G IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):311-24. PubMed ID: 16200755 [TBL] [Abstract][Full Text] [Related]
3. Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Colombo R; Pisano F; Micera S; Mazzone A; Delconte C; Carrozza MC; Dario P; Minuco G Neurorehabil Neural Repair; 2008; 22(1):50-63. PubMed ID: 17626223 [TBL] [Abstract][Full Text] [Related]
4. Quantitative EEG for Predicting Upper Limb Motor Recovery in Chronic Stroke Robot-Assisted Rehabilitation. Trujillo P; Mastropietro A; Scano A; Chiavenna A; Mrakic-Sposta S; Caimmi M; Molteni F; Rizzo G IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):1058-1067. PubMed ID: 28278477 [TBL] [Abstract][Full Text] [Related]
5. Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke. Song R; Tong KY; Hu X; Li L IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):371-9. PubMed ID: 18701384 [TBL] [Abstract][Full Text] [Related]
6. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265 [TBL] [Abstract][Full Text] [Related]
7. Training stroke patients with continuous tracking movements: evaluating the improvement of voluntary control. Casadio M; Giannoni P; Morasso P; Sanguineti V; Squeri V; Vergaro E Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5961-4. PubMed ID: 19964883 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of motor recovery in chronic and subacute stroke patients following a robot-aided training. Mazzoleni S; Puzzolante L; Zollo L; Dario P; Posteraro F IEEE Trans Haptics; 2014; 7(2):175-80. PubMed ID: 24968381 [TBL] [Abstract][Full Text] [Related]
9. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke. Chang JJ; Tung WL; Wu WL; Huang MH; Su FC Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578 [TBL] [Abstract][Full Text] [Related]
10. Test-retest reliability of robotic assessment measures for the evaluation of upper limb recovery. Colombo R; Cusmano I; Sterpi I; Mazzone A; Delconte C; Pisano F IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1020-9. PubMed ID: 24760936 [TBL] [Abstract][Full Text] [Related]
11. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758 [TBL] [Abstract][Full Text] [Related]
12. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke. Lewis GN; Perreault EJ IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):595-604. PubMed ID: 19666342 [TBL] [Abstract][Full Text] [Related]
13. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke. Dovat L; Lambercy O; Gassert R; Maeder T; Milner T; Leong TC; Burdet E IEEE Trans Neural Syst Rehabil Eng; 2008 Dec; 16(6):582-91. PubMed ID: 19144590 [TBL] [Abstract][Full Text] [Related]
14. Robot-assisted rehabilitation of hand function. Balasubramanian S; Klein J; Burdet E Curr Opin Neurol; 2010 Dec; 23(6):661-70. PubMed ID: 20852421 [TBL] [Abstract][Full Text] [Related]
15. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266 [TBL] [Abstract][Full Text] [Related]
16. Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training. Hu XL; Tong KY; Song R; Zheng XJ; Lui KH; Leung WW; Ng S; Au-Yeung SS J Electromyogr Kinesiol; 2009 Aug; 19(4):639-50. PubMed ID: 18490177 [TBL] [Abstract][Full Text] [Related]
17. Robot-aided sensorimotor training in stroke rehabilitation. Volpe BT; Krebs HI; Hogan N Adv Neurol; 2003; 92():429-33. PubMed ID: 12760210 [TBL] [Abstract][Full Text] [Related]
18. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation. Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406 [TBL] [Abstract][Full Text] [Related]
19. Stochastic estimation of arm mechanical impedance during robotic stroke rehabilitation. Palazzolo JJ; Ferraro M; Krebs HI; Lynch D; Volpe BT; Hogan N IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):94-103. PubMed ID: 17436881 [TBL] [Abstract][Full Text] [Related]
20. Experimental results using force-feedback cueing in robot-assisted stroke therapy. Johnson MJ; Van der Loos HF; Burgar CG; Shor P; Leifer LJ IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):335-48. PubMed ID: 16200757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]