These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 19666489)
41. Synergy, structure and conformational flexibility of hybrid cellulosomes displaying various inter-cohesins linkers. Molinier AL; Nouailler M; Valette O; Tardif C; Receveur-Bréchot V; Fierobe HP J Mol Biol; 2011 Jan; 405(1):143-57. PubMed ID: 20970432 [TBL] [Abstract][Full Text] [Related]
42. Influence of Fluorination on Single-Molecule Unfolding and Rupture Pathways of a Mechanostable Protein Adhesion Complex. Yang B; Liu H; Liu Z; Doenen R; Nash MA Nano Lett; 2020 Dec; 20(12):8940-8950. PubMed ID: 33191756 [TBL] [Abstract][Full Text] [Related]
43. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. Tsai SL; DaSilva NA; Chen W ACS Synth Biol; 2013 Jan; 2(1):14-21. PubMed ID: 23656322 [TBL] [Abstract][Full Text] [Related]
44. A cohesin domain from Clostridium thermocellum: the crystal structure provides new insights into cellulosome assembly. Shimon LJ; Bayer EA; Morag E; Lamed R; Yaron S; Shoham Y; Frolow F Structure; 1997 Mar; 5(3):381-90. PubMed ID: 9083107 [TBL] [Abstract][Full Text] [Related]
45. Differences in biomass degradation between newly isolated environmental strains of Clostridium thermocellum and heterogeneity in the size of the cellulosomal scaffoldin. Koeck DE; Koellmeier T; Zverlov VV; Liebl W; Schwarz WH Syst Appl Microbiol; 2015 Sep; 38(6):424-32. PubMed ID: 26227216 [TBL] [Abstract][Full Text] [Related]
46. Dwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy. Brujic J; Hermans RI; Garcia-Manyes S; Walther KA; Fernandez JM Biophys J; 2007 Apr; 92(8):2896-903. PubMed ID: 17259284 [TBL] [Abstract][Full Text] [Related]
47. Interactions between immunoglobulin-like and catalytic modules in Clostridium thermocellum cellulosomal cellobiohydrolase CbhA. Kataeva IA; Uversky VN; Brewer JM; Schubot F; Rose JP; Wang BC; Ljungdahl LG Protein Eng Des Sel; 2004 Nov; 17(11):759-69. PubMed ID: 15596428 [TBL] [Abstract][Full Text] [Related]
48. Revisiting the NMR solution structure of the Cel48S type-I dockerin module from Clostridium thermocellum reveals a cohesin-primed conformation. Chen C; Cui Z; Xiao Y; Cui Q; Smith SP; Lamed R; Bayer EA; Feng Y J Struct Biol; 2014 Nov; 188(2):188-93. PubMed ID: 25270376 [TBL] [Abstract][Full Text] [Related]
49. Fine-structural variance of family 3 carbohydrate-binding modules as extracellular biomass-sensing components of Clostridium thermocellum anti-σI factors. Yaniv O; Fichman G; Borovok I; Shoham Y; Bayer EA; Lamed R; Shimon LJ; Frolow F Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):522-34. PubMed ID: 24531486 [TBL] [Abstract][Full Text] [Related]
50. The bacterial scaffoldin: structure, function and potential applications in the nanosciences. Ding SY; Lamed R; Bayer EA; Himmel ME Genet Eng (N Y); 2003; 25():209-25. PubMed ID: 15260240 [TBL] [Abstract][Full Text] [Related]
51. Purification and crystallization of a trimodular complex comprising the type II cohesin-dockerin interaction from the cellulosome of Clostridium thermocellum. Adams JJ; Pal G; Yam K; Spencer HL; Jia Z; Smith SP Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Jan; 61(Pt 1):46-8. PubMed ID: 16508087 [TBL] [Abstract][Full Text] [Related]
52. Engineering the Mechanical Stability of a Therapeutic Affibody/PD-L1 Complex by Anchor Point Selection. Yang B; Gomes DEB; Liu Z; Santos MS; Li J; Bernardi RC; Nash MA bioRxiv; 2024 May; ():. PubMed ID: 38826272 [TBL] [Abstract][Full Text] [Related]
53. Structure of a family 3b' carbohydrate-binding module from the Cel9V glycoside hydrolase from Clostridium thermocellum: structural diversity and implications for carbohydrate binding. Petkun S; Jindou S; Shimon LJ; Rosenheck S; Bayer EA; Lamed R; Frolow F Acta Crystallogr D Biol Crystallogr; 2010 Jan; 66(Pt 1):33-43. PubMed ID: 20057047 [TBL] [Abstract][Full Text] [Related]
54. Molecular architecture and structural transitions of a Clostridium thermocellum mini-cellulosome. García-Alvarez B; Melero R; Dias FM; Prates JA; Fontes CM; Smith SP; Romão MJ; Carvalho AL; Llorca O J Mol Biol; 2011 Apr; 407(4):571-80. PubMed ID: 21315080 [TBL] [Abstract][Full Text] [Related]
55. Crucial roles of single residues in binding affinity, specificity, and promiscuity in the cellulosomal cohesin-dockerin interface. Slutzki M; Reshef D; Barak Y; Haimovitz R; Rotem-Bamberger S; Lamed R; Bayer EA; Schueler-Furman O J Biol Chem; 2015 May; 290(22):13654-66. PubMed ID: 25833947 [TBL] [Abstract][Full Text] [Related]
56. Probing the mechanism of cellulosome attachment to the Clostridium thermocellum cell surface: computer simulation of the Type II cohesin-dockerin complex and its variants. Xu J; Smith JC Protein Eng Des Sel; 2010 Oct; 23(10):759-68. PubMed ID: 20682763 [TBL] [Abstract][Full Text] [Related]
57. Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. Verdorfer T; Bernardi RC; Meinhold A; Ott W; Luthey-Schulten Z; Nash MA; Gaub HE J Am Chem Soc; 2017 Dec; 139(49):17841-17852. PubMed ID: 29058444 [TBL] [Abstract][Full Text] [Related]
58. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Milles LF; Schulten K; Gaub HE; Bernardi RC Science; 2018 Mar; 359(6383):1527-1533. PubMed ID: 29599244 [TBL] [Abstract][Full Text] [Related]