BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 19666532)

  • 21. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7.
    Chen JF; Tao Y; Li J; Deng Z; Yan Z; Xiao X; Wang DZ
    J Cell Biol; 2010 Sep; 190(5):867-79. PubMed ID: 20819939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules.
    Crist CG; Montarras D; Buckingham M
    Cell Stem Cell; 2012 Jul; 11(1):118-26. PubMed ID: 22770245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. miR-26a is required for skeletal muscle differentiation and regeneration in mice.
    Dey BK; Gagan J; Yan Z; Dutta A
    Genes Dev; 2012 Oct; 26(19):2180-91. PubMed ID: 23028144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. miR-206 and -486 induce myoblast differentiation by downregulating Pax7.
    Dey BK; Gagan J; Dutta A
    Mol Cell Biol; 2011 Jan; 31(1):203-14. PubMed ID: 21041476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3.
    Hirai H; Verma M; Watanabe S; Tastad C; Asakura Y; Asakura A
    J Cell Biol; 2010 Oct; 191(2):347-65. PubMed ID: 20956382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength.
    Bentzinger CF; von Maltzahn J; Dumont NA; Stark DA; Wang YX; Nhan K; Frenette J; Cornelison DD; Rudnicki MA
    J Cell Biol; 2014 Apr; 205(1):97-111. PubMed ID: 24711502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fibronectin regulates Wnt7a signaling and satellite cell expansion.
    Bentzinger CF; Wang YX; von Maltzahn J; Soleimani VD; Yin H; Rudnicki MA
    Cell Stem Cell; 2013 Jan; 12(1):75-87. PubMed ID: 23290138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The magic and mystery of microRNA-27 in atherosclerosis.
    Chen WJ; Yin K; Zhao GJ; Fu YC; Tang CK
    Atherosclerosis; 2012 Jun; 222(2):314-23. PubMed ID: 22307089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle.
    Allen DL; Loh AS
    Am J Physiol Cell Physiol; 2011 Jan; 300(1):C124-37. PubMed ID: 20980549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptomic Analysis of Single Isolated Myofibers Identifies miR-27a-3p and miR-142-3p as Regulators of Metabolism in Skeletal Muscle.
    Chemello F; Grespi F; Zulian A; Cancellara P; Hebert-Chatelain E; Martini P; Bean C; Alessio E; Buson L; Bazzega M; Armani A; Sandri M; Ferrazza R; Laveder P; Guella G; Reggiani C; Romualdi C; Bernardi P; Scorrano L; Cagnin S; Lanfranchi G
    Cell Rep; 2019 Mar; 26(13):3784-3797.e8. PubMed ID: 30917329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Post-transcriptional regulation of myogenic transcription factors during muscle development and pathogenesis.
    Chen SL; Wu CC; Li N; Weng TH
    J Muscle Res Cell Motil; 2024 Mar; 45(1):21-39. PubMed ID: 38206489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oncomeric Profiles of microRNAs as New Therapeutic Targets for Treatment of Ewing's Sarcoma: A Composite Review.
    Hassan M; Shahzadi S; Malik A; Din SU; Yasir M; Chun W; Kloczkowski A
    Genes (Basel); 2023 Sep; 14(10):. PubMed ID: 37895198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The roles of miRNAs in adult skeletal muscle satellite cells.
    Koopmans PJ; Ismaeel A; Goljanek-Whysall K; Murach KA
    Free Radic Biol Med; 2023 Nov; 209(Pt 2):228-238. PubMed ID: 37879420
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical Considerations for Investigating MicroRNAs during Tumorigenesis: A Case Study in Conceptual and Contextual Nuances of miR-211-5p in Melanoma.
    Vand-Rajabpour F; Savage M; Belote RL; Judson-Torres RL
    Epigenomes; 2023 Apr; 7(2):. PubMed ID: 37218870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specific miRNAs are associated with human cancer cachexia in an organ-specific manner.
    Krauss T; Heisz S; Honecker J; Prokopchuk O; Martignoni M; Janssen KP; Claussnitzer M; Hauner H; Seeliger C
    J Cachexia Sarcopenia Muscle; 2023 Jun; 14(3):1381-1394. PubMed ID: 37021483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The regenerative potential of Pax3/Pax7 on skeletal muscle injury.
    Azhar M; Wardhani BWK; Renesteen E
    J Genet Eng Biotechnol; 2022 Oct; 20(1):143. PubMed ID: 36251225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mechanism by which noncoding RNAs regulate muscle wasting in cancer cachexia.
    Zhou X; Hu S; Zhang Y; Du G; Li Y
    Precis Clin Med; 2021 Jun; 4(2):136-147. PubMed ID: 35694153
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Zhou HM; Conway SJ
    J Dev Biol; 2022 May; 10(2):. PubMed ID: 35645295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implications of Poly(A) Tail Processing in Repeat Expansion Diseases.
    Joachimiak P; Ciesiołka A; Figura G; Fiszer A
    Cells; 2022 Feb; 11(4):. PubMed ID: 35203324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-Coding RNAs as Regulators of Myogenesis and Postexercise Muscle Regeneration.
    Archacka K; Ciemerych MA; Florkowska A; Romanczuk K
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.