BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 19666617)

  • 41. Energy transduction: proton transfer through the respiratory complexes.
    Hosler JP; Ferguson-Miller S; Mills DA
    Annu Rev Biochem; 2006; 75():165-87. PubMed ID: 16756489
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The structure of the oxidized state of cytochrome c oxidase - experiments and theory compared.
    Blomberg MRA
    J Inorg Biochem; 2020 May; 206():111020. PubMed ID: 32062501
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Decoupling mutations in the D-channel of the aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides suggest that a continuous hydrogen-bonded chain of waters is essential for proton pumping.
    Zhu J; Han H; Pawate A; Gennis RB
    Biochemistry; 2010 Jun; 49(21):4476-82. PubMed ID: 20441187
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proton pumping mechanism and catalytic cycle of cytochrome c oxidase: Coulomb pump model with kinetic gating.
    Popović DM; Stuchebrukhov AA
    FEBS Lett; 2004 May; 566(1-3):126-30. PubMed ID: 15147881
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Allosteric Cooperativity in Proton Energy Conversion in A1-Type Cytochrome c Oxidase.
    Capitanio G; Palese LL; Papa F; Papa S
    J Mol Biol; 2020 Jan; 432(2):534-551. PubMed ID: 31626808
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design of photoactive ruthenium complexes to study electron transfer and proton pumping in cytochrome oxidase.
    Durham B; Millett F
    Biochim Biophys Acta; 2012 Apr; 1817(4):567-74. PubMed ID: 21939635
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plasticity of proton pathway structure and water coordination in cytochrome c oxidase.
    Namslauer A; Lepp H; Brändén M; Jasaitis A; Verkhovsky MI; Brzezinski P
    J Biol Chem; 2007 May; 282(20):15148-58. PubMed ID: 17363369
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transmembrane proton translocation by cytochrome c oxidase.
    Brändén G; Gennis RB; Brzezinski P
    Biochim Biophys Acta; 2006 Aug; 1757(8):1052-63. PubMed ID: 16824482
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural elements involved in electron-coupled proton transfer in cytochrome c oxidase.
    Namslauer A; Brzezinski P
    FEBS Lett; 2004 Jun; 567(1):103-10. PubMed ID: 15165901
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Properties of Arg481 mutants of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides suggest that neither R481 nor the nearby D-propionate of heme a3 is likely to be the proton loading site of the proton pump.
    Lee HJ; Ojemyr L; Vakkasoglu A; Brzezinski P; Gennis RB
    Biochemistry; 2009 Aug; 48(30):7123-31. PubMed ID: 19575527
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intramolecular proton-transfer reactions in a membrane-bound proton pump: the effect of pH on the peroxy to ferryl transition in cytochrome c oxidase.
    Namslauer A; Aagaard A; Katsonouri A; Brzezinski P
    Biochemistry; 2003 Feb; 42(6):1488-98. PubMed ID: 12578361
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calculated proton uptake on anaerobic reduction of cytochrome C oxidase: is the reaction electroneutral?
    Song Y; Michonova-Alexova E; Gunner MR
    Biochemistry; 2006 Jul; 45(26):7959-75. PubMed ID: 16800622
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Initiation of the proton pump of cytochrome c oxidase.
    Belevich I; Gorbikova E; Belevich NP; Rauhamäki V; Wikström M; Verkhovsky MI
    Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18469-74. PubMed ID: 20937896
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential.
    Björck ML; Brzezinski P
    Nat Commun; 2018 Aug; 9(1):3187. PubMed ID: 30093670
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coupled electron and proton transfer reactions during the O→E transition in bovine cytochrome c oxidase.
    Popović DM; Stuchebrukhov AA
    Biochim Biophys Acta; 2012 Apr; 1817(4):506-17. PubMed ID: 22086149
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deuterium isotope effect of proton pumping in cytochrome c oxidase.
    Salomonsson L; Brändén G; Brzezinski P
    Biochim Biophys Acta; 2008 Apr; 1777(4):343-50. PubMed ID: 18371493
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The generation of proton electrochemical potential gradient by cytochrome c oxidase.
    Rottenberg H
    Biochim Biophys Acta; 1998 Apr; 1364(1):1-16. PubMed ID: 9554930
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Water chain formation and possible proton pumping routes in Rhodobacter sphaeroides cytochrome c oxidase: a molecular dynamics comparison of the wild type and R481K mutant.
    Seibold SA; Mills DA; Ferguson-Miller S; Cukier RI
    Biochemistry; 2005 Aug; 44(31):10475-85. PubMed ID: 16060656
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lipid Composition Affects the Efficiency in the Functional Reconstitution of the Cytochrome
    Hugentobler KG; Heinrich D; Berg J; Heberle J; Brzezinski P; Schlesinger R; Block S
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32977390
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The mechanism for proton pumping in cytochrome c oxidase from an electrostatic and quantum chemical perspective.
    Blomberg MR; Siegbahn PE
    Biochim Biophys Acta; 2012 Apr; 1817(4):495-505. PubMed ID: 21978537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.