These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 19666695)

  • 1. Actions of antidiuretic hormone analogues on intact and nystatin-permeabilized frog skins.
    Jared SR; Rao JP; Subramani S
    Exp Physiol; 2009 Dec; 94(12):1174-84. PubMed ID: 19666695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of lysine-vasopressin (LVP) and 1-deamino-8-D-arginine-vasopressin (dDAVP) upon electrical potential, short-circuit current and transepithelial D.C. resistance of the frog skin.
    Bakos P; Ponec J; Lichardus B
    Gen Physiol Biophys; 1984 Aug; 3(4):297-305. PubMed ID: 6094299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of arginine vasotocin and vasopressin receptor antagonists on Na+ and Cl- transport in the isolated skin of two frog species, Hyla japonica and Rana nigromaculata.
    Yamada T; Nishio T; Sano Y; Kawago K; Matsuda K; Uchiyama M
    Gen Comp Endocrinol; 2008 May; 157(1):63-9. PubMed ID: 18448104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Opposite actions of different doses of arginine-vasotocin and 1-deamino-arginine-vasotocin on sodium ion transport in skin of the frog Rana temporaria].
    Bogolepova AE
    Zh Evol Biokhim Fiziol; 2011; 47(1):49-53. PubMed ID: 21469341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vasotocin has the potential to inhibit basolateral Na(+)/K (+)-pump current across isolated skin of tree frog in vitro, via its V(2)-type receptor/cAMP pathway.
    Takada M; Fujimaki K; Hokari S
    J Comp Physiol B; 2008 Nov; 178(8):957-62. PubMed ID: 18536923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of apical and basolateral K+ conductances in rat colon.
    Schultheiss G; Diener M
    Br J Pharmacol; 1997 Sep; 122(1):87-94. PubMed ID: 9298532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of arginine vasotocin and mesotocin on the activation and development of amiloride-blockable short-circuit current across larval, adult, and cultured larval bullfrog skins.
    Takada M; Fujimaki-Aoba K; Hokari S
    J Comp Physiol B; 2010 Mar; 180(3):393-402. PubMed ID: 19949800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolactin increases Na+ transport across adult bullfrog skin via stimulation of both ENaC and Na+/K+-pump.
    Takada M; Hokari S
    Gen Comp Endocrinol; 2007 May; 151(3):325-31. PubMed ID: 17367787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of salmon melanin concentrating hormone on vasopressin analogue (dDAVP) activity and sodium transport in frog skin.
    Smriga M; Bakos P; Jezová D
    Gen Physiol Biophys; 1994 Oct; 13(5):413-24. PubMed ID: 7797049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirement of potassium for the action of anti-diuretic hormone (ADH) on frog skin.
    Jared SR; Rao JP
    Zoolog Sci; 2011 Dec; 28(12):916-21. PubMed ID: 22132789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the effects of dDAVP and AVP on the sodium transport in the frog skin.
    Bakos P; Ponec J; Lichardus B
    Gen Physiol Biophys; 1990 Feb; 9(1):71-81. PubMed ID: 2311915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ethanol on the permeability of frog skin.
    Yorio T; Bentley PJ
    J Pharmacol Exp Ther; 1976 May; 197(2):340-51. PubMed ID: 1083905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+ transport and pH in principal cells of frog skin: effect of antidiuretic hormone.
    Lyall V; Belcher TS; Miller JH; Biber TU
    Am J Physiol; 1994 Jul; 267(1 Pt 2):R107-14. PubMed ID: 8048613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Evans Blue and amiloride on anti-diuretic hormone (ADH)-induced sodium transport across frog (Rana hexadactyla) skin.
    Jared SR; Rao JP
    Zoolog Sci; 2013 May; 30(5):402-7. PubMed ID: 23646945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion transport in rat antral mucosa in vitro: general characteristics.
    Bakos P; Jezová D
    Gen Physiol Biophys; 1995 Dec; 14(6):473-90. PubMed ID: 8773490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interdependence between sodium transport, external chloride, and sodium/calcium exchanger in the isolated skin of the Rana pipiens.
    Soto C; Aguilar G; Jiménez L
    J Exp Zool; 2001 Jan; 289(1):23-32. PubMed ID: 11169490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prostaglandin E2 inhibits antidiuretic hormone induced transepithelial sodium transport and cAMP production in frog skin epithelium (Rana esculenta).
    Rytved KA; Andersen H; Nielsen R
    Acta Physiol Scand; 1996 Dec; 158(4):357-63. PubMed ID: 8971257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ENaC-CFTR interactions: the role of electrical coupling of ion fluxes explored in an epithelial cell model.
    Horisberger JD
    Pflugers Arch; 2003 Jan; 445(4):522-8. PubMed ID: 12548399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microelectrode study of insulin effect on apical and basolateral cell membrane of frog skin: comparison with the effect of 1-deamino-8-D-arginine-vasopressin (dDAVP).
    Ponec J; Bakos P; Lichardus B
    Gen Physiol Biophys; 1989 Jun; 8(3):245-55. PubMed ID: 2670663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation in the effects of antidiuretic hormone on the isolated skin of the toad, Scaphiopus couchi.
    Hillyard SD
    J Exp Zool; 1976 Feb; 195(2):199-206. PubMed ID: 177715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.