These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19666712)

  • 1. Characterization of alanine catabolism in Pseudomonas aeruginosa and its importance for proliferation in vivo.
    Boulette ML; Baynham PJ; Jorth PA; Kukavica-Ibrulj I; Longoria A; Barrera K; Levesque RC; Whiteley M
    J Bacteriol; 2009 Oct; 191(20):6329-34. PubMed ID: 19666712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation and characterization of the dadRAX locus for D-amino acid catabolism in Pseudomonas aeruginosa PAO1.
    He W; Li C; Lu CD
    J Bacteriol; 2011 May; 193(9):2107-15. PubMed ID: 21378189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sarcosine Catabolism in Pseudomonas aeruginosa Is Transcriptionally Regulated by SouR.
    Willsey GG; Wargo MJ
    J Bacteriol; 2016 Jan; 198(2):301-10. PubMed ID: 26503852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional genomics of PycR, a LysR family transcriptional regulator essential for maintenance of Pseudomonas aeruginosa in the rat lung.
    Kukavica-Ibrulj I; Sanschagrin F; Peterson A; Whiteley M; Boyle B; MacKay J; Levesque RC
    Microbiology (Reading); 2008 Jul; 154(Pt 7):2106-2118. PubMed ID: 18599838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan.
    Korgaonkar AK; Whiteley M
    J Bacteriol; 2011 Feb; 193(4):909-17. PubMed ID: 21169497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterization of seven γ-Glutamylpolyamine synthetase genes and the bauRABCD locus for polyamine and β-Alanine utilization in Pseudomonas aeruginosa PAO1.
    Yao X; He W; Lu CD
    J Bacteriol; 2011 Aug; 193(15):3923-30. PubMed ID: 21622750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molybdate transporter ModABC is important for Pseudomonas aeruginosa chronic lung infection.
    Périnet S; Jeukens J; Kukavica-Ibrulj I; Ouellet MM; Charette SJ; Levesque RC
    BMC Res Notes; 2016 Jan; 9():23. PubMed ID: 26758577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DadY (PA5303) is required for fitness of
    Fulton RL; Downs DM
    Microb Cell; 2022 Dec; 9(12):190-201. PubMed ID: 36483308
    [No Abstract]   [Full Text] [Related]  

  • 9. Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response.
    Palma M; Zurita J; Ferreras JA; Worgall S; Larone DH; Shi L; Campagne F; Quadri LE
    Infect Immun; 2005 May; 73(5):2958-66. PubMed ID: 15845502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KynR, a Lrp/AsnC-type transcriptional regulator, directly controls the kynurenine pathway in Pseudomonas aeruginosa.
    Knoten CA; Hudson LL; Coleman JP; Farrow JM; Pesci EC
    J Bacteriol; 2011 Dec; 193(23):6567-75. PubMed ID: 21965577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanolamine Catabolism in Pseudomonas aeruginosa PAO1 Is Regulated by the Enhancer-Binding Protein EatR (PA4021) and the Alternative Sigma Factor RpoN.
    Lundgren BR; Sarwar Z; Pinto A; Ganley JG; Nomura CT
    J Bacteriol; 2016 Sep; 198(17):2318-29. PubMed ID: 27325678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication.
    Duan K; Dammel C; Stein J; Rabin H; Surette MG
    Mol Microbiol; 2003 Dec; 50(5):1477-91. PubMed ID: 14651632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Genomic Studies Reveal the Role of d-Alanine Metabolism in Pseudomonas aeruginosa Cell Stiffness.
    Trivedi RR; Crooks JA; Auer GK; Pendry J; Foik IP; Siryaporn A; Abbott NL; Gitai Z; Weibel DB
    mBio; 2018 Sep; 9(5):. PubMed ID: 30206169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two NAD-independent l-lactate dehydrogenases drive l-lactate utilization in Pseudomonas aeruginosa PAO1.
    Wang Y; Xiao D; Liu Q; Zhang Y; Hu C; Sun J; Yang C; Xu P; Ma C; Gao C
    Environ Microbiol Rep; 2018 Oct; 10(5):569-575. PubMed ID: 30066495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remodeling of O Antigen in Mucoid Pseudomonas aeruginosa via Transcriptional Repression of
    Cross AR; Goldberg JB
    mBio; 2019 Feb; 10(1):. PubMed ID: 30782665
    [No Abstract]   [Full Text] [Related]  

  • 16. Inhibition of Pseudomonas aeruginosa secreted virulence factors reduces lung inflammation in CF mice.
    Sandri A; Ortombina A; Boschi F; Cremonini E; Boaretti M; Sorio C; Melotti P; Bergamini G; Lleo M
    Virulence; 2018; 9(1):1008-1018. PubMed ID: 29938577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas aeruginosa Condensins Support Opposite Differentiation States.
    Zhao H; Clevenger AL; Ritchey JW; Zgurskaya HI; Rybenkov VV
    J Bacteriol; 2016 Nov; 198(21):2936-2944. PubMed ID: 27528506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism and Pathogenicity of Pseudomonas aeruginosa Infections in the Lungs of Individuals with Cystic Fibrosis.
    Palmer GC; Whiteley M
    Microbiol Spectr; 2015 Aug; 3(4):. PubMed ID: 26350318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cAMP and Vfr Control Exolysin Expression and Cytotoxicity of Pseudomonas aeruginosa Taxonomic Outliers.
    Berry A; Han K; Trouillon J; Robert-Genthon M; Ragno M; Lory S; Attrée I; Elsen S
    J Bacteriol; 2018 Jun; 200(12):. PubMed ID: 29632090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the Pseudomonas aeruginosa transcriptional response to phenylalanine and tyrosine.
    Palmer GC; Palmer KL; Jorth PA; Whiteley M
    J Bacteriol; 2010 Jun; 192(11):2722-8. PubMed ID: 20304990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.